" Instituto Superior
de Tecnologias
’ Avancgadas do Porto

APPSOCKETS

Tiago Marques Soares Lima
Numero: 50046

Instituto Superior de Tecnologias Avancgadas do Porto
R. Dr. Lopo de Carvalho 4350-162 Porto
Portugal

Porto, 15 de junho de 2023

MOD.IP. 108.R4.09.22

MOD.IP. 108.R4.09.22

MOD.IP. 108.R4.09.22

APPSOCKETS

Tiago Marques Soares Lima
Numero: 50046

Trabalho realizado no ambito da unidade curricular de
Projeto, da Licenciatura em Engenharia Informatica, do

Instituto Superior de Tecnologias Avancadas do Porto,
orientado pelo Dr. Jodo Rebelo.

Instituto Superior de Tecnologias Avangadas do Porto
Portugal

Porto, 15 de junho de 2023

MOD.IP. 108.R4.09.22

MOD.IP. 108.R4.09.22

“A vontade de vencer, o desejo de ter sucesso, o impulso de alcancar
todo o seu potencial... essas sdo as chaves que abrirdo a porta para a
exceléncia pessoal. ”

“The will to win, the desire to succeed, the urge to reach your full
potential... these are the keys that will unlock the door to personal

excellence.”

Conflcio

MOD.IP. 108.R4.09.22

Vi

MOD.IP. 108.R4.09.22

RESUMO

Neste projeto foi desenvolvida uma aplicacdo para comunicacdo em soft real-time,
utilizando o sistema de comunicacdo Publish/Subscribe, com o propdésito de substituir um
sistema previamente em utilizacdo. Utilizando as tecnologias gossip, hash ring e grRPC, foi
criada uma aplicacdo distribuida e horizontalmente escalavel, que é capaz de substituir o
sistema anterior na empresa NAPPS, enquanto mantém todas as suas funcionalidades.

Este projeto foi desenvolvido na modalidade de projeto inovador na empresa NAPPS, este
enquadra-se na area de especializacdo de Desenvolvimento/programacdo (Sistemas de
informacdo, Web e Mdavel). Adicionalmente, este projeto permitiu a utilizacdo dos
conhecimentos técnicos e tedricos adquiridos ao longo do curso, no desenvolvimento de um
projeto cuja aplicacdo pratica permite validar todos os ensinamentos que foram aprendidos,
durante a Licenciatura em Engenharia Informatica, concluindo assim esta etapa tdo importante

do meu percurso académico.

Palavras-chave: Soft Real-Time, Publicar/Subscrever, WebSockets, Message Broker.

vii

MOD.IP. 108.R4.09.22

ABSTRACT

In this project, an application for soft real-time communication was developed using the
Publish/Subscribe communication system, with the purpose of replacing a previously used
system. Using gossip, hash ring, and gRPC technologies, a horizontally scalable distributed
application was created, which is capable of replacing the previous system at NAPPS while
maintaining all of its functionalities.

This project was developed as an innovative project within the specialization area of
Development/Programming (Information Systems, Web, and Mobile) at NAPPS. Additionally,
this project allowed for the application of the technical and theoretical knowledge acquired
throughout the course, in the development of a project whose practical application validates all
of the teachings that were learned during the Bachelor's degree in Computer Engineering, thus

completing this important stage of my academic journey.

Keywords: Soft Real-Time, Publish/Subscribe, WebSockets, Message Broker.

viii

MOD.IP. 108.R4.09.22

AGRADECIMENTOS

Em primeiro lugar, gostaria de agradecer a minha familia pelo apoio incansavel durante todo
0 meu percurso académico. Por diversas vezes contribuiram positivamente para 0 meu

desempenho interagindo e questionando as op¢Oes tomadas.

Agradeco ao Professor Engenheiro Jodo Rebelo, 0 meu orientador de projeto e coordenador
do projeto final pela sua recetividade, apoio, orientacao e gentileza que sempre demonstrou ao

longo de toda a licenciatura e, em especial no desenvolvimento deste projeto.

Da mesma forma, gostaria também de agradecer a todos os docentes e ndo docentes que
fizeram parte do meu percurso na licenciatura do ISTEC Porto.

Um especial agradecimento aos colegas de curso Gongalo Nogueira que me acompanhou

em todo 0 meu percurso académico.

N&o esquecendo os meus colegas na NAPPS por todo o companheirismo que tanto me

fizeram evoluir a nivel pessoal e profissional

MOD.IP. 108.R4.09.22

INDICE GERAL

[1 11V PR TS Vil
AB ST RA CT bbb e nnbes viii
AGRADECIMENTOS ...ttt st e et e e e e e srae e e nnaeeans IX
INDICE DE FIGURAS.......ooiiiteeteeeee ettt ettt Xiii
INDICE DE TABELAS ...ttt XV
LISTA DE SIGLAS E ACRONIMOSooviiiieieeeteeese e, XVi
GLOSSARIO ...ttt Xvii
PARTE | = RELATORIO DE PROJETO ...ttt es s 1
1 INTRODUGAOooiieeeceeeetee e ee ettt snasnaanes 1
11 Enquadramento € MOTIVAGADccooviiiiiinie i 1
1.1.1 EnQUadramento 08 EIMPIESAccveiueeiueiieieesieesieesteesteetesssesssesseesseesseasessasssesssessseessesnsesnsesssenseees 1

0 |V (o] £ Vo Lo O SO P TP PP U PO URTPRPROPO 1

L.1.3 PrODIBMAS ... b et bbbttt r bbb 3

1.2 (@] o] =1 (1[0TSR SOUPPSN 5
13 EStrutura do REIAtOFI0cccuiiiecce et 5

2 ESTADO DA ARTE ..ottt sttt e 6
2.1 Evolucéo de comunicagao em temMPO FEAL..........coceieieiiiiireee e e 6
2.2 SOIUGBES EXISTENTES ...ttt bbbttt 9
2.3 SOIUGED PErSONALIZAAAecveieiieiiieieeee et 13

3 METODOLOGIA ...ttt e e et e e e naa e e anaeeaneeeanes 15
3.1 L=] -SSR 15
3.2 (O (o] T 1r= 0 - PSSR 17

4 DESENVOLVIMENTO ...ttt sttt nae e e e annee e 18
4.1 Principio de fuNCIONAMENTO...........coiiiiiiee e 18
4.2 Alternativa @ aplicagao NATSooiiiie et 20
421 Centralizag8o d0O ChANNEL........coiiiiiiic e 21

4.3 LO00] 01317 o 1o J OSSP ORI 24
.31 RO it e e be e be e be e be et b e eaaesbeeaheeebeebeereearearee e 25

R A 1o 11T 1 o S 26

4.3.3 Escolha de protoCOI0 & CONSENSOc..oouiiuirieitirieeiieie sttt bttt bbb eneas 30

4.4 1 CTodo] o101 o] [o=Tox= o OSSR 31
4.5 1] 1 g1 0] o= o USSP 32
A5 1 HBSNING ..ttt et ettt b e bttt bbb ne e 32

4.5.2 Distributed Hash Table........ccoooiiiiiiice et enees 32

453 HESN RING oottt e bbbt b et b et b re e 34

4.5.4 CONSIStENCIA EVENTUAL.........oiiiiieiiiei bbbttt bbb eneas 36

4.6 N[0 0 IR 13 =T 1 - VSRS PRSR 37
4.7 FUNCIONAMENTO ...ttt sttt eseesteeeesreeneeneeeneas 39
A R 1o ToT - 12 OSSPSR 39

7.2 HUD ettt b e be e be e ae e eba e ebeeeteebeebeeareatee e 40

MOD.IP. 108.R4.09.22

A T O o F= Va1 U= I = (U] =T 43
O O o - 13 o= R 44

R T \\F- 1101 o 1o TP TP PRSP 50

4.7.6 Regras de Channel, Namespace € de HUDcccoiiiiiiiniiiiiiceee e 51

O A A \U (T d 01V [(=] SO 51

A YT o] o TSRO RTT 51

4.8 Y] R ot TR 57
O T 0 T= Y1 11 o 1o = T [58

T =11 (=TSRRI 60

TR T O |11 o (< R 62

O T = 0] (0 To7 o] [0 R 62

TR 1= - T I [T =TT Y- o R 63

4.8.6 ESCAlADIIIAAE TULUA........eeiiiieiie ettt e e st e e s et e e s sbb e e e s sabeeeesrbees 63

4.9 DIAGIAMAS ...ttt b bbbttt b b b n e n e 64
A.9. 1 ENQINE .ot E bR bbb bbbttt b et ne s 66

4.9.2 CIUSTEFNOUGEMAENAGETccve ittt ettt sttt ettt b e et b e bbb bbbttt b et st b s b 67

R T O o F= 114 1= = 010117 | R 68

I (V] o R 69

R T VY o IR 69

e ST O o F= 1 1= T3 (=] 1] R 70

4.9.7 Fluxograma de SUDSCIIGADeiuereiieieitertesie sttt sttt bbbt ebe e e e bbb sneeneas 70

5 DISCUSSAO DE RESULTADOS ..ottt ee e e e er e ees e e e e s e s e e en s 74
B CONCLUSAO ..ottt ettt ettt ettt ettt ettt ettt et e enn 79
PARTE Il = ARTIGO CIENTIFICO ..o et e e er e en e e s ena, 80
R 1 € oo [0 [oF To I OSSPSR 80

AL IMIOTIVAGAD ...ttt b bbb bbb bRt et b b e b nes 80

I T @ T o] =] 1 1Yo SR RSTOSN 81
I, [£= (0 [0 10 £ A o (=TSRRI 81

A. Evolugdo de comunicagao em teMPO FEAL........ccoeiiiiiiiiies e 82

B. SOIUGBES EXISTENTES ...ttt bbbt e b bbbt b ettt bbbt ns 83

C. SOIUGAOD PEIrSONAIIZAAcviiiieiciiiee e bbbt e et st 86

V. V1Y oo (o] [0 o F- VRSOOSR PSSRSO 87

Y 1= € - T TP 87

Y B 1Y T o NV o A V4T g T (o IR 88
Y O] ¢ 1-1=] o 1T T 89

L T =\ i TSR 90

O € o111 | o SO P 91

D. Escolha de protoCoI0 08 CONSENSO........ciuiiieeiieeiieeieeiteeeesteesteesteete e ste e s e e steesseensesssesraesraesseeeeeneens 93

E. INTEICOMUINICAGADc.vevitiite ittt sttt b e bbbt et be s bt bt bt bt et e bbbt st e sbe et e ens 93

T B 11] o 18] o= Lo F OO O TRTR T PTUSO TP PRPPTURO 94

LC T o F-] 1 T ST 94

[P N[0 1Yo ST 1Y £=1 1 = N TR PRPRPRT 95

l. FNHCIBLIZAT ..ttt ettt e e ettt e e et et e e sea e e e e eab et e s etaeeeseaaeeesasaeeessareeeesteeessasreeesrares 95

VI. AV I L (2] 2] o Lot T LT 99
BIBLIOGRAFIA oottt e e e e et ettt e e e e e e e e e e e aeseeeeereenrnaereeeeeees 101
APENDICE Aottt ettt ettt ettt ettt et eeen et ee et e et erenen s 103
APENDICE B ...ttt ettt et es et et et et et et et eseseses et esesesesesesesesesesesesesenenes 103
APENDICE C.oooeeeeeeeeeeeeeeeeet ettt ettt ettt ettt ettt et e s et ee et et enen s e 104
APENDICE Dottt ettt et esereseseseneserenenes 104

Xi

MOD.IP. 108.R4.09.22

APENDICE E ..ottt en sttt ettt 104
APENDICE F ..ottt sttt n et 105
Y == N 5] [0 =3 7SO 115
APENDICE H...ooovoveeecee ettt sttt nan s 119

Xii

MOD.IP. 108.R4.09.22

INDICE DE FIGURAS

Figura 1 - Diagrama de Ganttccccceeiieiieiieieee et esre e enes 17
FIQUIa 2 - SISTEMEA ANTEITON.......eiuiiiiiieieeitce et bbbt 18
Figura 3 - Intercomunicag@o COM NATS ..o 19
Figura 4 - Ineficiéncia na intercomunicagdo com a aplicagdo NATSccociiiiiiiiiicienn, 20
Figura 5 - IntercomuniCaCa0 TIFELA.........cvevueiieiieeie et ens 21
Figura 6 - TranSmiSSA0 de MENSAGENSccueiuiriieiereieitesie sttt ne e 22
Figura 7 - TransSmiSSA0 COM REAIS........cciuieiiiieieee ettt ens 23
Figura 8 - Channel CeNraliZa00............ooiiiiiiicieee e 24
Figura 9- Exemplo de cluster a utilizar protocolo goSSIP.c.ccvvervveieiieriee e 27
Figura 10 - EXemplo de PropagaGaoccoereeieieierieniesie s 28
Figura 11- Membros do cluster representados num anel virtual............ccccoocevveeiiiie e ieenee, 35
Figura 12 - Anel virtual com membros de um cluster e channelscccccociiiicicien, 35
Figura 13- Anel virtual com membros de um cluster e channels com a falha de um membro 36
Figura 14 - Exemplo de funcionamento Parte L.........cocooeieiiiininiiniieieiee et 38
Figura 15 - Exemplo de funcionamento Parte 2...........cccvecviieieeieiie s 39
Figura 16 - Flow de SUDSCIIGE0 O CIUSTETcciiiiiiiiiee e 65
Figura 17 - Diagrama e CIASSESccuciuieiiiieiieeie sttt ste e ste e ans 66
Figura 18 - Diagrama d0 ENGINE........c..ooiiiiiiiiiieieiere e 67
Figura 19 - Interface CluSterNOdEMANAQGETcccveiieiiieieiieie e 68
Figura 20 - Interface do ChannelPrOCESSONuciiiirieierieiie e 69
Figura 21 - Diagrama do HUDcc.ooiiiiic et 69
Figura 22 - Diagrama da SESSIONc..eiueiiirieriiiieieienie ettt sttt 70
Figura 23 - Interface do ChannelLiSteNErccocvviiiieiieie e 70
Figura 24 - Subscrigdo a um channel 10Calcooiiiiiiiiiii e 71
Figura 25 - Subscricdo a um channel remoto...........ccoevveii e 72
Figura 26 - Fung&o de subscrever a um channel ... 73
Figura 27 - Tempo médio de redistribuicdo no cluster em milissegundos (Adicionar)........... 75
Figura 28 - Tempo médio de redistribuicéo no cluster em milissegundos (Remover)............ 76
Figura 29 - Distribuicao de SeSSOES POI NOTA........cveiieiiieiecieieee e 77
Figura 30 — Média de duragao de SESSE0 POF NOTa..........cviiiiirieiiiieee e 78
Figura 31 - Exemplificacdo da ineficiéncia da intercomunicacdo com a aplicacdo NATS.....89
Figura 32 - Exemplo de cluster a utilizar 0 protoColo gOSSIPccoveveierierenerereseeeeeiee 91
Figura 33 - EXemplo de Propagacaocc.eeeeieeieiieiieesie et este ettt sra e 91
Figura 34 - Membros do cluster representados num anel virtual.............cccccooiiiiiiiiicnen, 94
Figura 35 - Anel virtual com membros de um cluster e channelscccccooeiiiieie e, 94
Figura 36 - Anel virtual com membros de um cluster e channels com a falha de um membro

.. 95
Figura 37 - Tempo médio de redistribuicdo no cluster em milissegundos (Adicionar)........... 97
Figura 38 - Tempo médio de redistribuicdo no cluster em milissegundos (Remover)............. 97
Figura 39 - DistribuiGao de SESSOES POI NOTA........cueviiiiriiiiiiesieiieeee e 98
Figura 40 - Média de duragdo de SeSSE0 POr NOTA.......ccevveveiiiiiieieieiee e 98
Figura 41- Pagina inicial do dashboardccceoeiiiiiiiiiee e, 105
Figura 42- Pagina de topografia do dashboard, parte 1..........cccccceiveiiiicii i, 106
Figura 43- Pagina de topografia do dashboard, parte 2c.ccecviiiieniienseeeeee, 107
Figura 44- Pagina de topografia parte 2 ampliada............ccccceveiieiiiicieccecc e, 107
Figura 45- Pagina de topografia do dashboard, parte 3 ..o, 108
Figura 46 - Pagina de topografia parte 3 ampliada...........ccccceeviiieiiiic i, 109
Figura 47- Pagina de métricas do dashboard, channels ativos............ccccoerennincninicneen, 110

MOD.IP. 108.R4.09.22

Figura 48- Pagina de métricas do dashboard, SESSOES atiVascerverererererieseneereerienenn, 110
Figura 49- Pagina de métricas do dashboard, hubs ativos...........cccccceeevieiiiic i, 111
Figura 50 - Pagina de métricas do dashboard, mensagens enviadas comparadas com

MENSAPENS FECEDIAASvveitietieie ettt e et e st e et e snaesaeeteenaestaeteaneenreas 111
Figura 51- Pagina de métricas do dashboard, bytes enviados comparados com bytes recebidos
.. 112
Figura 52- Pagina de métricas do dashboard, Sessdes por dia.........cccecererrereneienesenieennns 112
Figura 53- Pagina de métricas do dashboard, média de duracédo de sesséo por dia............... 113
Figura 54 - PAgina de teSte e SESSAD.......eruiuiriiriririe ettt 113
Figura 55 - Pagina de teste de sessdo, detalnes de SESSA0........ccccvververieieeiieiie e, 114
Figura 56- Pagina de teste de sessdo, histOrico de CONEXE0.........cerververerereseseseeieeeieeen, 114
Figura 57 - Pagina de teste de sessdo, historico de channel.............c.ccooeviieiiiciiccc e, 115

Xiv

MOD.IP. 108.R4.09.22

INDICE DE TABELAS

Tabela 1- Membros num cluster @ SEUS INAICEScvviviieiiieiireie e, 33
Tabela 2- Mapeamentos de channels para membros de um cluster comn=3.........ccccceoveeen. 33
Tabela 3- Mapeamentos de channels para membros de um cluster comn=2.........c..ccccoe..... 34

XV

MOD.IP. 108.R4.09.22

LISTA DE SIGLAS E ACRONIMOS

AMQP — Advanced Messaging Queuing Protocol
APNS — Apple Push Notification Service

AWS — Amazon Web Services

B2B — Business to Business

DHT — Distributed Hash Table

ECS — Elastic Container Service

FCM - Firebase Cloud Messaging

HTTP — Hypertext Transfer Protocol

IETF — Internet Engineering Task Force

JSON - JavaScript Object Notation

MQTT — Message Queuing Telemetry Transport
NATS — Neural Autonomic Transport System
OTP — Open Telecom Platform

SaaS — Software as a Service

SSE — Server-Sent Events

STOMP — Simple/Streaming Text Oriented Messaging Protocol

XVi

MOD.IP. 108.R4.09.22

GLOSSARIO

Backoffice — O backoffice é a parte administrativa e de gestdo de uma empresa que acontece
nos bastidores e é responsavel por fornecer suporte e recursos para as atividades principais da
empresa, garantindo que as operacdes funcionem sem problemas e que 0s objetivos estratégicos

sejam alcancados.

Cluster — Um cluster é um grupo de computadores que trabalham juntos para realizar uma
tarefa ou fornecer um servigo especifico. Esses computadores sdo conectados por meio de uma
rede e sdo geridos como se fossem um unico sistema, 0 que permite uma maior capacidade de
processamento e de armazenamento de dados. Adicionalmente, clusters também podem ser
usados para fornecer servicos de alta disponibilidade, balanceamento de carga e tolerancia a

falhas.

Dashboard — Um dashboard é uma interface visual que apresenta informacdes importantes e
faceis de entender sobre um determinado conjunto de dados ou processo. Este ajuda a
monitorizar o desempenho de diferentes areas ou processos de negécio de forma rapida e
eficiente, permitindo que os utilizadores tomem decisdes informadas com base nos dados

apresentados.

Heartbeat — O termo heartbeat é utilizado para descrever um mecanismo de monitorizacédo
que permite que um sistema verifique continuamente o estado de outro sistema ou componente,
através da troca regular de mensagens ou sinais entre os sistemas. Se o sistema nédo receber um
sinal de “batimento cardiaco” dentro de um intervalo de tempo definido, pode ser considerado
como inoperacional ou com falha, e medidas apropriadas podem ser tomadas para lidar com a
situacdo. O heartbeat é frequentemente utilizado em ambiente de alta disponibilidade ou em

sistemas distribuidos para garantir a confiabilidade e a disponibilidade dos sistemas.

Metadata — Metadata € um termo utilizado para descrever dados que fornecem informacdes
sobre outros dados. Em outras palavras, sdo dados que descrevem caracteristicas, propriedades
ou atributos de um determinado conjunto de dados, como informacgdes sobre a sua origem,

formato, data de criagéo, entre outros.

XVii

MOD.IP. 108.R4.09.22

peer-to-peer — Peer-to-peer (P2P) é um modelo de comunicacdo descentralizado em que 0s
dispositivos ligados a rede, chamados de peers, comunicam diretamente entre si, sem a
necessidade de um servidor central. Cada peer na rede atua como um cliente e um servidor,

tornando a rede mais resiliente e independente, além de permitir uma maior escalabilidade.

Prometheus — Prometheus ¢ uma ferramenta de monitoramento de codigo aberto utilizada para
coletar e armazenar métricas de sistemas e servicos. Este € muito utilizado em ambientes de

cloud e containers, sendo capaz de monitorar aplicativos distribuidos e escalaveis.

Pub/Sub — Pub/Sub, ou publish/subscribe, € um modelo de comunicacdo em que 0S
participantes se comunicam por meio de mensagens transmitidas por um intermediario
(broker). Neste modelo, os participantes sdo divididos em duas categorias: publishers e
subscribers. Publishers sdo responsaveis por enviar mensagens para o intermediario, enquanto
subscribers se inscrevem em determinados tépicos de interesse. Quando um publisher envia
uma mensagem, o intermedidrio envia a mensagem para todos os subscribers que estdo
inscritos no topico relevante. Este modelo é muito utilizado em sistemas distribuidos para
comunicacdo assincrona e escalavel entre diferentes partes do sistema, permitindo a
comunicacdo eficiente entre muitos participantes sem a necessidade de cada participante saber
com quem esta a comunicar. O Pub/Sub é amplamente utilizado em aplica¢des de 10T (Internet
das Coisas), sistemas de mensagens e sistemas de eventos, permitindo que os participantes se
comuniquem de forma eficiente e escalavel. Ao longo deste documento o nome PubSub ou

Pub/Sub sera utilizado, tendo ambos o0 mesmo significado.

Rate Limit — O rate limit ¢ uma forma de controlar a quantidade de pedidos que uma aplicacdo
pode fazer num determinado periodo. Por exemplo, se um servico tem um rate limit de 100
pedidos por minuto, isso significa que um utilizador sé podera realizar 100 pedidos nesse

periodo. Caso este tente fazer mais que esses, estes serdo impedidos.

Redis — Redis é uma base de dados em memdria de codigo aberto, utilizado para armazenar
dados chave-valor. Este € rapido e escalavel, adequado para aplica¢fes que necessitam de alta
velocidade e baixa laténcia, como aplicagdes web, sistemas de mensagens e jogos online (Redis
Labs, s.d.).

Xviii

MOD.IP. 108.R4.09.22

RPC — Remote Procedure Call (Chamada de Procedimento Remoto) é um protocolo de
comunicacéo entre diferentes sistemas de computagao. E usado para permitir que um programa
em um dispositivo possa chamar uma fungdo ou método em outro dispositivo através da rede,
como se essa fungdo estivesse a ser executada localmente. O RPC é uma tecnologia muito
utilizada em sistemas distribuidos e € suportado por varias linguagens de programacao e
plataformas. Este permite que diferentes sistemas operacionais e ambientes de rede se
comuniquem de forma transparente, tornando a programacao e a integracdo de sistemas muito

mais faceis.

Snapshot — Um snapshot € uma imagem instantanea ou copia exata de um estado de um sistema
ou conjunto de dados em um determinado momento. Em outras palavras, ¢ uma “fotografia”
do estado atual de um sistema ou conjunto de dados que pode ser armazenada e utilizada
posteriormente para referéncia, restaurar um sistema ou conjunto de dados em um estado

anterior.

Tenant — Um tenant refere-se a uma entidade, como uma organizacao ou utilizador, que possui
acesso e controle exclusivo sobre um conjunto de recursos dentro de um ambiente
compartilhado. O conceito de tenant € amplamente utilizado em servicos de computacdo em
nuvem, como Software como Servico (SaaS), Plataforma como Servigo (PaaS) e Infraestrutura
como Servico (laaS), para garantir que varias entidades possam compartilhar recursos de forma

segura e eficiente.

Timestamp — Uma timestamp é uma informacdo que indica 0 momento em que ocorreu um
evento, como uma transacdo, uma alteracdo num documento ou a criagdo de um ficheiro.
Geralmente, é representada por uma sequéncia de caracteres que inclui a data e a hora em que
0 evento ocorreu, seguindo um formato predefinido. A timestamp é util para fins de
rastreabilidade e para garantir que as informacdes séo sincronizadas e organizadas de forma

cronoldgica. Este podem ser representados em varios formatos, como 1SO 8601 e Unix.

XiX

MOD.IP. 108.R4.09.22

PARTE | - RELATORIO DE PROJETO

1 INTRODUCAO

Neste projeto é explicado a criagdo de infraestrutura para o envio de informacéo em soft
real-time entre clientes e servidores, e a0 mesmo tempo substituir um sistema com objetivos
similares, mantendo o maximo de compatibilidade possivel de forma a facilitar a migragéo para

0 NOVO sistema.

1.1 Enquadramento e Motivagéo

Este projeto foi desenvolvido na empresa NAPPS, com o objetivo de resolver um problema
existente, e permitir que novas funcionalidades sejam desenvolvidas com o resultado do
desenvolvimento deste projeto. Assim sendo, serd explicado o contexto em que a empresa

trabalha e a motivagéo para o desenvolvimento deste projeto.

1.1.1 Enquadramento de empresa

NAPPS é uma empresa startup SaaS (software como servi¢os) B2B (de empresa para
empresa) que desenvolve aplicacBes personalizaveis para dispositivos moveis, nomeadamente
para Android e 10S, que séo vendidas como um servico a lojas de e-commerce. Atualmente as
plataformas suportadas sdo Shopify e WooCommerce, no entanto, integracbes com outros
plugins/apps nas plataformas também sdo alvo para integracéo nas aplicacdes. Neste contexto
de aplicacBGes e-commerce, surgiu a necessidade de comunicar com as aplicacBes moveis de
forma quase instantanea sempre que a aplicacdo estiver em execucao.

Para esse propdsito, foi necessario criar infraestrutura para o envio de informacdo em tempo
real de forma bidirecional entre clientes e servidores. A infraestrutura ndo sera exclusiva as
aplicacBes madveis, tornando possivel a sua utilizacdo por outros servicos que possam necessitar

de comunicagdo em tempo real.

1.1.2 Motivacao

Este projeto consiste numa aplicacdo Publish/Subscribe com suporte para maltiplos tenants,
onde existem elementos que subscrevem a um tdpico (Subscribe) e recebem todas mensagens
ou eventos publicados neste mesmo topico (Publish).

O sistema criado ao longo deste projeto, tem como propdsito substituir o sistema anterior
enquanto mantém todas as suas funcionalidades, adiciona novas funcionalidades e facilita a

sua utilizacao.

MOD.IP. 108.R4.09.22

As motivacdes para o desenvolvimento deste novo sistema foram baseadas em alguns

pontos principais, sendo estes:

e O sistema a ser substituido ndo ser horizontalmente escalavel;

e A ndo existéncia de ferramentas de monitorizacéo e detecdo de erros;
e Arquitetura ndo preparada para novas funcionalidades;

o Falta de testes no projeto.

O sistema a ser substituido, foi desenvolvido de forma répida, e durante o seu
desenvolvimento ndo existia a necessidade de que este fosse horizontalmente escalvel, e a
adaptacdo seria complicada exigindo modificar grande parte do seu funcionamento.
Inicialmente, este sistema foi projetado para ser utilizado maioritariamente por dashboards e
backoffices como subscritores enquanto alguns eventos eram emitidos por outros servidores.

No entanto, novas funcionalidades a serem planeadas necessitam que a utilizagcdo deste
sistema seja ampliada para a aplicagdes moveis, onde existe um valor muito mais elevado de
conexdes a serem realizadas, de forma a quantificar a diferenca de conexdes esperadas, no
sistema a ser substituido era somente esperado ter no maximo 50 conexdes diarias, um valor
muito baixo, enquanto o valor esperado para os utilizadores atuais é de aproximadamente 9000
conexdes, um valor muito superior. Adicionalmente, sempre que se adquire um novo cliente, é
esperado que este valor suba entre algumas centenas a alguns milhares (aproximadamente entre
600 e 2000), sendo que o novo sistema tem de ser capaz de suportar este aumento de
utilizadores.

Outro ponto relacionado com a necessidade de escalar horizontalmente, consiste em permitir
que o sistema seja tolerante a falhas, algo que nao é possivel se somente um servidor puder ser
executado ao mesmo tempo. O motivo pelo qual o sistema ndo é horizontalmente escalavel,
deve-se ao funcionamento geral de um sistema de comunicacdo PubSub, onde
independentemente do servidor a que o cliente esta conectado, este tem de receber eventos que
podem ser enviados noutros servidores.

A inexisténcia de ferramentas de monitorizagdo e de detecdo erros dificulta a manutencéo
do sistema, no entanto, sendo que nenhuma funcionalidade em que este era utilizada era
considerada critica, ndo houve nenhum incentivo para desenvolver estas, no entanto, sendo que
este sistema passou a ser utilizado por clientes finais, € importante ser capaz de identificar os
erros 0 mais rapido possivel, assim como ser capaz de monitorizar a sua utilizacdo de forma a

planear o melhor possivel o escalamento automatico.

MOD.IP. 108.R4.09.22

1.1.3 Problemas

No sistema a ser substituido, além dos pontos acima mencionados, existem outros problemas
ou inconveniéncias identificadas durante a utilizagdo deste. Portanto, analisando o
funcionamento do projeto atual temos a seguinte informacé&o.

Por cada tenant é criado um objeto App que contém um nome que é utilizado como
identificador Unico, estes tém de ser explicitamente criados previamente antes da sua utilizacao.
Assim que criado, a primeira conexdo a um destes tenants um Hub é criado para gerir todas
conexdes e channels (tdpicos) deste tenant, tornando assim o Hub como o elemento que agrupa
conexdes e topicos de um tenant. Resumindo, temos a hierarquia de Hub gere varias conexdes
e varios channels, sendo o objeto App apenas uma forma de criar um tenant.

Outros problemas encontrados atualmente séo a necessidade de criar explicitamente cada
topico individualmente. Sendo um sistema separado, manter a sincronizacdo de quais tenants
estdo ativos acaba por ser um problema na presenca de falhas, quanto a necessidade de criar
topicos explicitamente dificulta em casos onde o numero de topicos é dindmico e a necessidade
de criacdo aumenta a complexidade de gestdo. Por exemplo, caso seja necessario um topico
para cada produto, seria necessario criar um numero elevado de tdpicos, e para piorar a
situacdo, muitas vezes os produtos apresentam variagdes dos mesmos (Exemplo: Camisola
versdo azul, versdo vermelha e versdo verde), sendo necessario criar topicos para cada variagao.
Por fim quando um produto fosse apagado seria necessario voltar a apagar os topicos por cada
variante.

De forma a evitar este problema é necessario que a criacdo de cada tdpico seja de forma
dindmica, evitando explicitamente a criacdo deste permitindo ter configuracdes num grupo de
topicos e apenas opcionalmente para cada topico explicitamente, quanto a criacdo de tenants
estes também podem ser opcionalmente dindmicos com configuragdes por defeito de forma a
evitar acessos ndo autorizados.

Outros problemas menores passam por ndo permitir conexdes nao autenticadas, sendo que
é sempre necessario um token de acesso (objeto JSON compacto assinado) para iniciar uma
conexdo, mas em alguns cenarios esta exigéncia dificulta o processo. Voltando ao exemplo de
produtos, caso uma aplicacdo cliente necessite ser notificado das alteracGes de stock de um
produto e o utilizador ndo tenha uma conta, este tem de pedir a um servidor um token de acesso
como utilizador anénimo, e s6 apds poderad se conectar e subscrever ao topico de stock do

produto.

MOD.IP. 108.R4.09.22

Adicionalmente, atualmente para autenticar ou mudar o token de acesso € necessario
desconectar e reconectar com o0 novo token de acesso criando um periodo onde atualizacdes
ndo sao recebidas.

Neste sistema, a capacidade de rastreamento de presencas apresenta algumas falhas quando
o servidor é desligado devido a uma falha, este ndo é capaz de corrigir o estado das presencas
armazenadas, sendo necessario intervencdo manual para corrigir o problema.

Tendo brevemente apresentado o projeto atualmente em producdo e os seus problemas, estes

s8o 0s pontos a ter em consideracdo no planeamento do novo projeto:

e Restringir 0 acesso a topicos de acordo com as configuracdes ou autorizagdes;
o Configuracdes dos topicos devem permitir configurar:
o O armazenamento das mensagens enviadas;
o O rastreamento da presenca no topico;
o Definir um tépico como publico ou privado, permitindo que este seja acedido
por conexdes anbnimas caso seja publico;
o Permitir ou ndo andnimos mesmo que o tdpico seja publico.
« Criacdo dindmica de topicos;
o Agrupamento de topicos, tendo uma configuracéo aplicada a todos os topicos
presentes no grupo, e que a sua alteracdo seja refletida nos mesmos.
« Permitir que o cliente esteja autenticado ou ndo, permitindo autorizagdes extras caso
este esteja autenticado;
e Suporte para maltiplos tenants, possivelmente a criacdo destes de forma dinamica;
o Rastrear a presenca dos utilizadores em cada tdpico;
o De preferéncia ser capaz de enviar mensagens na mesma ordem que a infraestrutura
recebeu;
e Ser capaz de escalar horizontalmente;
e Permitir comunicacdo com servicos internos via NATS;

e Envio de mensagens autorizadas para uma stream no NATS.

MOD.IP. 108.R4.09.22

1.2 Objetivos

Tendo sido explicado os problemas que levaram a desenvolver um novo sistema, €
necessario definir os objetivos a serem cumpridos pelo novo sistema, lembrando que 0 novo
sistema vai substituir um existente, € necessario que este seja capaz de suportar 0s casos de uso
atuais, assim como criar 0 maximo de compatibilidade possivel. Portanto, sendo o0s
requerimentos do novo sistema similares com o anterior em producao, € necessario analisar
como o atual funciona e ver que problemas apresenta. Os principais pontos a ter em conta no

projeto sao:

o Comunicacdo bidirecional entre cliente e servidor através WebSockets;

e Comunicacdo utilizando Pub/Sub (publicar e subscrever) em tdpicos (homeados de
channels);

« Restringir 0 acesso a topicos de acordo com as autorizacdes;

e Suporte para maltiplos tenants, existindo configurac@es por cada tenant;

« Criacdo explicita de topicos e com configuracdes por cada;

« Rastreamento da presenca dos clientes em cada topico;

« Armazenamento das mensagens enviadas em cada topico.

1.3 Estrutura do Relatério

O presente relatdrio esta organizado em 6 capitulos onde é abordado todo o processo de

planeamento e de desenvolvimento do projeto.

Capitulo 1 — Introducéo ao projeto, contextualizacdo do tema e motivacgdo para o
desenvolvimento da plataforma;

Capitulo 2 — Estado da Arte, explicacdo de métodos de comunicacao em aplicaces web,
e apresentacdo de tecnologias existentes e servicos;

Capitulo 3 — Metodologia e planeamento do projeto;

Capitulo 4 — Desenvolvimento do projeto, explicacdo de partes principais do projeto,
escolha de tecnologias a ser utilizados, funcionamento de componentes do projeto e
ferramentas criadas;

Capitulo 5 — Discusséo de resultados obtidos;

Capitulo 6 — Concluséo do desenvolvimento do projeto e apresentacao das reflexdes.

MOD.IP. 108.R4.09.22

2 ESTADO DA ARTE

Nesta parte vai ser mencionado técnicas utilizadas para enviar informacdo em tempo real
tem evoluido, protocolos que tenham vindo a ser criados e qual foi o escolhido para este projeto.
Adicionalmente, sdo selecionados projetos de cddigo aberto e servigos comerciais que podem

potencialmente ser utilizados de forma a tentar a cumprir os objetivos deste projeto.

2.1 Evolucgdo de comunicagdo em tempo real

Comunicacdo em tempo real ndo é um tdpico novo e esta presente em varias aplicacdes,
principalmente em aplicacdes de mensagens, no entanto, em aplicaces web nem sempre
existiu uma forma de criar uma ligag&o bidirecional entre cliente e servidor. Sendo necessario
que aplicagdes web tenham a possibilidade de realizar uma comunicacdo com os servidores
primeiro é necessario conhecer as op¢oes existentes e como estas foram evoluindo.

Inicialmente, em aplicac6es Web ndo existia a possibilidade de criar liga¢bes bidirecionais
com servidores utilizando as APIs fornecidas pelos browsers, de forma a resolver esta
limitacdo, em 2011 um novo protocolo foi padronizado Fette e Melnikov (2011) como RFC
6455, este protocolo ficou conhecido como WebSockets e € atualmente a forma padréo de
comunicacdo bidirecional com servidores em aplicagdes Web. Em outras aplicacGes nao web,
estas limitacbes ndo existiam, portanto cabia a cada desenvolvedor utilizar a sua
implementacdo ou reutilizar uma existente.

Antes da criacdo do protocolo WebSockets, a técnica long polling era uma forma comum de
simular comunicacdo bidirecional, assim como mencionado pela Internet Engineering Task
Force (2011), “web applications that need bidirectional communication between a client and a
server [...] has required an abuse of HTTP to poll the server for updates while sending upstream
notifications as distinct HTTP calls” (The WebSocket Protocol) (capitulo 1.1, 1° paragrafo),
visto que os pedidos HTTP funcionam como request-reply (pergunta-resposta) de forma
unidirecional (cliente para servidor), ndo existia forma de um servidor notificar o utilizador
que um evento tenha acontecido no momento, ou seja, uma aplicagdo cliente teria que
periodicamente realizar um pedido HTTP ao servidor de forma a verificar que novos eventos
tenham ocorrido. Tendo como exemplo uma aplicagdo de chat, onde existem largos periodos
sem atividade, é possivel que grande parte destes pedidos ndo tenham informacdo nova
desperdicando recursos, ou entdo, caso o periodo entre pedidos seja longo € possivel que

demore demasiado tempo para receber nova informagéo. Utilizando o mesmo exemplo, numa

MOD.IP. 108.R4.09.22

conversa entre duas pessoas e com intervalo entre pedidos de 5 segundos, uma mensagem pode
demorar até esse mesmo intervalo s6 para ser recebida pela outra pessoa.

De forma a evitar a quantidade de pedidos realizados e a reduzir o tempo que demora a
receber informacéo, o servidor artificialmente demora mais tempo para enviar uma resposta,
esperando que exista nova informacdo ou que tempo limite de conexdo tenha sido atingido.
Esta parte é a origem do nome Long na técnica Polling. Desta forma, o tempo de atraso a
receber a mensagem seria no maximo o tempo de receber a Gltima resposta mais o tempo de
iniciar um novo pedido, algo que poderia demorar segundos que passou para milissegundos,
além de reduzir consideravelmente a quantidade de pedidos a serem feitos.

Com a criacdo do protocolo WebSockets, a técnica long polling deixou de ser usada em
novos projetos e serve como alternativa caso uma conexdo WebSocket ndo seja possivel. No
entanto, embora WebSockets seja 0 padréo existem outras opcGes para permitir que o servidor
comunique com o cliente tais como: Server-Sent Events, Web Push e HTTP Streaming.

Server-Sent Events ou SSE, assim como definido por Roome e Yang (2020) no RFC 8895,
permite ao servidor enviar informagéo para o cliente por HTTP pela duragdo da conexéo, ao
contrario do protocolo WebSockets, este somente permite uma comunicacao unidirecional de
servidor para cliente, e ndo suporta o envio de informacdo em formato binario. Visto que este
protocolo somente permite o envio de informacao de servidor para cliente, pedidos adicionais
tém de ser feitos caso o cliente precise de enviar informagéo para o servidor.

O Web Push, conforme definido por Thomson e Damaggio (2016) no RFC 8030, torna
possivel o envio de informacédo para o cliente, no entanto, este costuma ser utilizado para o
envio de notificacbes e ndo de dados em geral, sendo as mensagens enviadas acompanhadas
por titulo, conteudo, e exigem que os clientes aceitem uma permissdo para receber esta
informacdo. Embora esta op¢do ndo seja adequada para envio de informagdo em tempo real,
esta pode servir como alternativa para o envio de informacdo quando é necessario que a
informacao seja recebida mesmo gue o cliente ndo esteja ligado a um dos servidores.

O HTTP Streaming é relativamente similar ao Server-Sent Events, este também permite o
envio de informacé&o para o cliente de forma unidirecional. Este funciona enviando informagéo
sem tamanho definido, pondo a aplicagéo cliente constantemente & espera dos proximos dados
até a conclusdo do pedido HTTP.

Tendo revisto os meios de comunicacao disponiveis, o protocolo WebSockets aparenta ser
a melhor opcéo, principalmente por ser o protocolo padrdo na industria e pela sua capacidade
de comunicacéo bidirecional, no entanto, outros protocolos poderdo ser implementados quando

a bidirecionalidade ndo for necessaria, preferencialmente utilizando Server-Sent Events.

MOD.IP. 108.R4.09.22

Escolhido o protocolo WebSockets, convem conhecer o seu funcionamento, assim como
mencionado previamente, este permite comunicacdo bidirecional entre cliente e servidor, esta
é estabelecida utilizando HTTP inicialmente que ap6s um handshake é estabelecida. Este
protocolo € fundamentalmente dividido em duas partes: o handshake e a transferéncia de dados.

No handshake, o pedido é realizado pelo cliente enviando a intencdo de transformar a
conexdo unidirecional em uma bidirecional (com o nome de Upgrade no protocolo) ao qual o
servidor deverd responder que esta a trocar o protocolo, apos esta parte a conexao é considerada
estabelecida. Na transferéncia de dados, € usado o conceito de mensagens, sendo cada
composta por um ou mais frames. Cada frame tem um tipo associado, tendo cada frame
pertencente & mesma mensagem o mesmo tipo. De forma geral, existem 3 tipos de dados, sendo
textual, binario e de controle. No tipo textual a informacdo € interpretada como UTF-8
enquanto no tipo binario a interpretacdo € deixada a responsabilidade da aplicacdo, para o
controle, gque nao tem como objetivo transferir dados da aplicacdo, sdo usados como sinalizacao
da conexdo, como por exemplo PING, PONG e CLOSE. Estes tltimos PING e PONG tem
como proposito verificar se a conexdo ainda se encontra ativa, principalmente quando a
aplicacdo envolve pouco trafego. O transporte de mensagens numa conexdo com protocolo
WebSocket é similar a uma conexdo TCP, este apenas junta um mecanismo de framing que
reduz essa responsabilidade na aplicacdo, quanto ao formato dos frames ndo sera mencionado

tendo em conta que nédo faz parte do objetivo deste documento.

MOD.IP. 108.R4.09.22

2.2 Soluc0es existentes

Tendo em conta o protocolo escolhido e os pontos a serem considerados, foi realizada
pesquisa sobre solucgdes ja existentes que suportam os pontos definidos e a0 mesmo tempo
tentar perceber de que forma estas solucgdes estruturam as solucfes e 0 que estas permitem.
Estas solugdes incluem tanto projetos e bibliotecas de cddigo aberto como servicos, as

principais solucdes encontradas sao as seguintes.

o Codigo aberto:
o Centrifugo;

o Mercure;

o Phoenix;

o VerneMQ;

o Emitter;

o HiveMQ;

o EMQX;

o SocketCluster;

o Soketi;

o Signal-R;
e Servicos:

o Ably;

o PubNub;

o Pusher;

o Fanout.

Deste conjunto existem algumas opg¢des que funcionam como um broker de mensagens,

utilizando protocolos ja existentes como MQTT, deste conjunto temos o0s seguintes:

Centrifugo (s.d.) € uma aplicacdo que serve como um broker de mensagens. Esta aplicacdo
suporta a distribuicdo de mensagens com os protocolos WebSockets e gRPC e com o envio de
mensagens por pedido HTTP. E possivel de escalar horizontalmente utilizando através da
utilizacdo de um dos engines suportados pela aplicacdo. De forma a permitir que os clientes
possam enviar mensagens, estes precisam de uma autorizagdo extra criada por servidores, ou

que estes sirvam como intermediarios para o envio de mensagens.

MOD.IP. 108.R4.09.22

O Mercure (s.d.) é um broker de mensagens, com distribuicdo de mensagens utilizando SSE
(unidirecional) e com o envio de mensagens por pedido HTTP. A possibilidade de escalar
horizontalmente exige o uso de um servico oferecido pelos desenvolvedores para a gestédo da
infraestrutura. Sendo o protocolo de comunicagéo principal SSE este remove a possibilidade
de comunicacdo bidirecional, para que os clientes possam enviar mensagens, precisam de uma
autorizacao extra criada por servidores, ou que estes sirvam como intermediarios para o0 envio

de mensagens.

O Phoenix Framework (s.d.) € um framework para a linguagem de programacéo Elixir, com
suporte para comunicacdo em tempo real e escalavel horizontalmente. Sendo desenvolvido em
Elixir permite a utilizagdo da Erlang VM, desenvolvida com suporte para tolerancia a falhas e
maioritariamente utilizada em sistemas de telecomunicagdes tornando uma excelente escolha.
O protocolo de comunicacéo é utilizado € WebSockets e tem suporte para praticamente todos
0s outros protocolos sendo WebSockets o principal. Infelizmente, Elixir ou Erlang séo

linguagens ao qual ndo existe conhecimento interno para a sua utilizagéo.

VerneMQ (Octavo Labs AG., s.d.), HiveMQ (HiveMQ, s.d.), EMQX (EMQ Technologies
Inc., s.d.) e Emitter (Emitter, s.d.) sdo tecnologias sdo baseadas no protocolo MQTT, embora
com algumas diferencas nas suas implementacdes, todas estas oferecem possibilidade de
escalar horizontalmente. A utilizacdo do protocolo MQTT permite que a comunicacéo seja feita
diretamente por TCP ou WebSockets. O protocolo MQTT tem como meio de comunicacao
principal Pub/Sub, no entanto, algumas funcionalidades extras podem a vir ser necessarias,

algo que podem ser implementadas utilizando topicos no MQTT.

SocketCluster (SocketCluster, s.d.) é uma biblioteca de javascript que permite a
comunicacdo no formato de Pub/Sub e é capaz de escalar horizontalmente. Infelizmente a
documentacdo nédo é extensiva, principalmente quanto ao subprotocolo. Adicionalmente, esta
opcao tem como objetivo primario servir como processador direto das mensagens recebidas,
enquanto o objetivo pretendido é somente a distribuicdo, mas é possivel adaptar para o caso

necessario.

Soketi (s.d.) € um servidor de WebSockets compativel com o subprotocolo Pusher v7,
permitindo que clientes desenvolvidos para esta plataforma possam ser reutilizados,

adicionalmente, € capaz de escalar horizontalmente através da aplicacdo Redis.

10

MOD.IP. 108.R4.09.22

Signal-R (Microsoft, s.d.) € uma biblioteca criada pela Microsoft que oferece a possibilidade
de comunicacdo em tempo real com clientes, esta biblioteca funciona somente em servidores
desenvolvidos em C# com a tecnologia ASP.NET. Esta opc¢éo € capaz de escalar utilizando a
aplicacdo adicional Redis ou um servico desenvolvido pela Microsoft disponivel na Azure
Cloud.

Desta lista de op¢Bes com cadigo aberto a opgdo que mais se adequa é o framework Phoenix.
Este é desenvolvido em elixir que por sua vez é executado na Erlang VM, a qual tem acesso a
um conjunto de bibliotecas nomeadas de OTP (Open Telecom Platform) que facilita o
desenvolvimento de aplicagdes distribuidas. Adicionalmente esta linguagem € utilizada por
grandes plataformas como WeChat e WhatsApps, que servem como comprovativo para a sua
escalabilidade. No entanto, Elixir ou Erlang sdo linguagens ao qual ndo existe conhecimento
interno para a sua utilizacao.

Quanto a opcdo Mercure, esta ndo suporta o envio de mensagens bidirecionais, incluindo
de clientes ndo autenticados, este exige que outros servidores sejam capazes de enviar
mensagens pelos clientes ou que sirvam como meio de autenticacdo dos mesmos.

VerneMQ, HiveMQ, EMQX e Emitter sdo possiveis opg¢des, no entanto estas ficam somente
pelo protocolo MQTT, no entanto funcionalidades adicionais além das definidas no protocolo
MQTT, teriam de ser desenvolvidas a parte, visto que o suporte para modificacdes &
relativamente reduzido.

A opcao Soketi, apresenta dois problemas, primeiro ser desenvolvida em javascript que por
sua vez é executado em node.js, embora seja plataformas viaveis, este tipo de aplicacdo exige
processamento simultaneo e paralelismo, tendo em conta que o node.js é executado como um
processo de um unico thread, este apresenta desvantagens quanto as outras possibilidades,
adicionalmente, para utilizar eficientemente os recursos disponiveis seria necessario varias
instancias da mesma aplicacao a correr em simultdneo com espacos de memdaria separados.

Por fim, Signal-R é uma boa opcdo para empresas que ja usam C#, no entanto, este ndo é o
caso, adicionalmente, de forma a escalar horizontalmente a aplicacdo Redis pode ser utilizada,
mas o principal método é com um servico desenvolvido pela Microsoft disponivel na Azure

Cloud, algo que também n&o € usado internamente.

11

MOD.IP. 108.R4.09.22

Quanto aos servicos, a maior parte destes oferecem uma plataforma para a comunicagdo em
tempo real, com suporte com varios protocolos e com escalabilidade gerida, no entanto, grande

parte destes tem limitagdes no nimero de conexdes.

Ably (s.d.) é uma plataforma de mensagens Pub/Sub com garantia de envio, ordem de envio,
e com suporte para varios protocolos tais como MQTT, STOMP, AMQP, PUSHER e PubNub.
Permite conexdes com os protocolos WebSockets, SSE e o envio de mensagens por HTTP.
Adicionalmente, permite o rastreamento da presenca dos clientes, envio de notificacbes push,

oferece um historico de mensagens e com suporte para restaurar desconexdes abruptas.

PubNub Inc (2022) é uma plataforma de mensagens Pub/Sub sem garantia de envio ou
ordem de envio, os protocolos utilizados ndo sdo especificados, no entanto, segundo 0s
exemplos apresentados utilizam a técnica long-polling. Esta plataforma também permite o
rastreamento da presenca dos clientes, envio de notificacbes push e processamento de

mensagens enviadas.

Pusher Ltd (s.d.) é uma plataforma similar as anteriores, funciona igualmente com
mensagens Pub/Sub mas sem garantia de ordem e envio. Esta utiliza conexdes com o protocolo
WebSockets e sub-protocolo Pusher, um protocolo proprietario. Assim como as opcdes
anteriores também permite o rastreamento da presenca dos clientes. Algumas funcionalidades
que ndo oferecem sdo um histérico de mensagens, recuperacdo de mensagens perdidas.
Notificacdes push sdo possiveis, mas fazem parte de um servico a parte oferecido pela mesma

empresa.

Fanout (Fanout, s.d.) € uma que opcao oferece tanto uma versdo com cédigo aberto quanto
um servicgo. A opcdo de codigo aberto serve como um intermediario entre outros servicos onde
estes podem enviar atualizacdes para serem distribuidas pelos clientes, esta op¢do nao é
horizontalmente escalavel sem adaptacéo dos servicos para o envio de mensagens utilizando
um protocolo de comunicag¢do ZeroMQ ou entdo publicando para todas as instancias. A versao
de servigo, oferece mais funcionalidades, como organizacdo de channels (equivalente a um
topico) por realms (um elemento que agrupa channels). Ambas op¢bes permitem conexdes
com os protocolos WebSocket, SSE e long-polling. Ao contrario das opc¢des anteriores, 0
rastreamento da presenca de clientes, envio de notificagbes push ndo suportadas,

adicionalmente o suporte para ordem e garantia de envio das mensagens € parcial.

12

MOD.IP. 108.R4.09.22

Estas quatro opcdes, sdo plataformas que oferecem uma maior abstracdo aos sistemas
Pub/Sub, estas oferecem funcionalidades tipicamente ndo existentes em um message broker
tais como o rastreamento de presengas, envio de notificagcbes push e historico de mensagens.
Desenvolver estas funcionalidades em algumas das opg¢des apresentadas que ndo as oferecem
necessitam modificacbes no projeto em si, algo que iria exigir familiaridade com o
funcionamento interno destes. Quanto as plataformas apresentadas, nomeadamente Ably,
PubNub, Pusher e Fanout, as que mais cumprem 0s pontos a ter em consideracdo sédo Ably,
Pusher e PubNub na ordem que melhor cumprem. Embora estas op¢des ndo tenham integracéo
com a aplicacdo NATS, seria possivel adaptar para o que a plataforma oferece ou entdo

desenvolver uma ferramenta adicional que se realiza a conversao.

A plataforma Pusher quando falamos de meios de comunicacdo e funcionamento dos
mesmos, cumpre oS requisitos, incluindo o rastreamento de presenca através de tdpicos
especializados para o caso, topicos publicos e privados utilizando um prefixo no seu nome. No
entanto, nenhum dos tipos de topicos tem a capacidade de armazenar um histérico de
mensagens. Outro problema comum em plataformas, que ocorre neste caso é o nimero de
conexdes, cada loja tem a sua aplicacdo e o seu conjunto de clientes, e a empresa tem de estar
preparada para uma elevada quantidade de conexfes em simultaneo, no caso do Pusher o plano
maior listado oferece no méaximo 30 mil conexdes, exigindo além disso negociar com a
empresa.

A plataforma PubNub, ndo estabelece conexdes utilizando o protocolo WebSocket, em vez
disso utiliza pedidos HTTP e uma espécie de long-polling o custo de performance e energia
para as aplicacOes acabar por ser mais elevado, e ndo sendo uma conexao bidirecional este ndo
permite o envio bidirecional de mensagens, no entanto, todas outras funcionalidades estéo
presentes.

Por fim, Ably € a plataforma que melhor cumpre os pontos previamente mencionados, esta
permite conexdes por WebSockets e outros protocolos, rastreamento de presencas, garantia na
ordem e entrega de mensagens, armazenamento opcional das mensagens, e agrupamento de
topicos permitindo um conjunto de tépicos ter a mesma configuracdo. No entanto, assim como

no Pusher o limite de conexdes se mantém.

2.3 Solucéo personalizada

Ap0s todas estas possibilidade terem sido analisadas, foi decidido desenvolver um novo

sistema em vez de reutilizar as opgdes mencionadas pelos seguintes motivos:

13

MOD.IP. 108.R4.09.22

e Extensibilidade;

e Limites da API;

e Adaptacéo ao caso de uso;
e Imprevisao de custo;

e Conhecimento existente na empresa.

Muitos destes servicos oferecem sistemas simples de PubSub, no entanto, pouca
personalizacdo além disso, sendo que caso seja necessario funcionalidades além das oferecidas
em conjunto com o sistema PubSub, é necessario as desenvolver num sistema separado. Por
exemplo, um sistema de presenca em conjunto com meta dados sobre todos utilizadores
subscritos num tépico é uma funcionalidade que pode estar embutida num tépico, mas
desenvolver um sistema sé para esta funcionalidade néo é prético.

Dentro de todos servicos apresentados, 0 que mais se destacou por ser 0 mais proximo de
atender a todos requisitos é o servico Ably, no entanto, assim como os servicos em geral
apresenta limites na utilizacdo da sua API, como por exemplo, limites de eventos num tépico
por segundo e maximo de utilizadores subscritos num channel. Adicionalmente, sendo o
numero de conexdes um valor que flutua bastante, assim como o nimero de eventos enviados
para topicos, prever os custos dos servigos torna-se dificil e sem forma de implementar um teto
maximo

Quanto as op¢des de cddigo aberto, muitas destas ndo cumprem 0s requisitos necessarios,
sendo necessario adaptar 0s projetos e ter o custo extra de manutencdo de manter o projeto
atualizado com novas funcionalidades implementadas no cddigo base. De todas as op¢oes, a
que melhor cumpre os requisitos necessarios é o framework Phoenix, utilizando a tecnologia
presente na Erlang VM este permite criar um sistema distribuido, e adicionalmente o
framework Phoenix permite customizar o funcionamento dos tdpicos. No entanto, este
framework utiliza as linguagens Elixir e Erlang, que sdo linguagem ao qual ndo existe
conhecimento interno para sua utilizagéo.

Tendo esta informagéo em conta, a criagdo de um novo sistema foi o caminho decidido de
forma reutilizar o conhecimento existente da linguagem Go (The Go Programming Language,

s.d.) e ferramentas ja utilizadas internamente como a aplicacdo NATS.

14

MOD.IP. 108.R4.09.22

3 METODOLOGIA

Para levantamento de requisitos, foi usado como base o sistema ja presente em producéo,
visto que grande parte das suas funcionalidades sdo necessarias por outros servicos dentro da
empresa NAPPS. Estando a substituir um sistema em utilizacdo internamente, ja existe um
conhecimento prévio de problemas que existiam, ou melhorias desejadas. Portanto, utilizando
o feedback dos utilizadores do sistema, em conjunto com funcionalidades futuras previstas, foi
realizado um brainstorming onde se definiu o que o projeto precisava, assim como vai ser visto

ao longo deste documento.

3.1 Tarefas

O projeto esta dividido em varias tarefas, algumas das tarefas vao envolver varios pontos
que serdo descobertos ao longo da fase de pesquisa e possivelmente em adaptacdes a novas
funcionalidades. As tarefas definidas até ao momento séo:

o Tarefa 1 — Pesquisa de possiveis solucBes existentes e avaliacdo das mesmas;
o Tarefa 2 — Pesquisa do funcionamento das atuais solucdes;

o Tarefa 3 — Elaborar funcionamento do projeto;

o Tarefa 4 — Avaliar possiveis problemas de migracdo para novo projeto;

o Tarefa 5 — Desenvolvimento de prototipo;

o Tarefa 6 — Teste de protétipo e avaliar possiveis problemas;

o Tarefa 7 — Corrigir possiveis problemas ou adaptar para possiveis utilizagoes;
o Tarefa 8 — Teste em Cloud (AWS);

o Tarefa 9 — Criacdo de testes para cobrir I6gica de projeto;

o Tarefa 10 — Implementacdo em producdo em fase de teste.

Apo6s mencionadas as tarefas para realizacdo, passo a elaborar o que cada constitui.

Na tarefa 1, é realizada uma pesquisa por possiveis solu¢des comerciais ou de codigo aberto
e andlise rapida se estas podem cobrir os casos de utiliza¢do atual, na tarefa 2 ap6s a eliminacéo
de solugdes que ndo se adaptam aos casos de utilizagdo, iremos verificar mais profundamente
o0 seu funcionamento, e como se comportaria em funcionalidades planeadas e custos para as
mesmas. Utilizando o conhecimento do funcionamento obtido pelas tarefas 1 e 2, é elaborado
um plano geral com todas as funcionalidades necesséarias e o seu funcionamento interno, apos

esta serd elaborado uma analise de problemas que possam existir ao realizar a migracdo do

15

MOD.IP. 108.R4.09.22

projeto anterior para o atual, quanto menor o custo de migracdo menor sera 0 tempo para
introduzir em producéo e atualizacdo de sistemas em producdo, e esta etapa sera a tarefa 4.
Apos ter sido realizada uma analise do funcionamento e tendo sido verificado possiveis
partes problemaéticas, é realizado o desenvolvimento de um prot6tipo do projeto como tarefa 5,
0s testes mais manuais serdo realizados e serdo avaliados possiveis problemas que tenham
ocorrido, este passo corresponde a tarefa 6, para tarefa 7, sera a correcao dos erros que tenham
sido encontrados e adaptacéo para funcionalidades que tenham surgido ou adaptagéo das atuais.
Por fim, o funcionamento serd testado na cloud AWS e o desenvolvimento de testes e
ferramentas de analise para ser possivel inspecionar os funcionamento e erros que ocorram com
0 projeto em funcionamento na cloud, e como Ultima etapa o projeto sera posto em producéo,
mas em fase de teste com trafego real, mas em componentes que nao sejam criticos, estas trés

partes serdo as tarefas 8, 9 e 10.

16

MOD.IP. 108.R4.09.22

3.2 Cronograma

O cronograma que representa as tarefas previamente definidas para o projeto é representado na seguinte forma, como na figura 1.

Figura 1 - Diagrama de Gantt

Oct 2022 Nov 2022 Dec 2022 Jan 2023 Feb 2023 Mar 2023 Apr 2023 May 2023 Jun 2023

Desenvolvimento de projeto

Tarefa 1 - Pesquisa de possiveis solugbes existentes e avaliagio das mesmas -L_;I

Tarefa 2 - Pesquisa do funcionamento das atuais solugées

Tarefa 3 - Elaborar funcionamento do projeto ﬁ_’__’—l

Tarefa 4 - Avaliar possiveis problemas de migragdo para novo projeto -L_;I

Tarefa 5 - Desenvolvimento de protétipo _L_;|
Tarefa 6 - Teste de protdtipo e avaliar possiveis problemas

Tarefa 7 - Corrigir possiveis problemas ou a adaptar para possiveis usagens E-L_;I

Tarefa § - Teste em Cloud (AWS) g
Tarefa 9 - Criagdo de testes para cobrir maximo possiveis casos _L_;I
Tarefa 10 - Implementagio em producio em fase de teste e analise de resultados -

Fonte: Propria

17

MOD.IP. 108.R4.09.22

4 DESENVOLVIMENTO

Neste capitulo sdo apresentadas as decisdes que foram tomadas inicialmente,
nomeadamente a estrutura inicial e a utilizacdo da aplicacdo NATS. Também é apresentado 0s
motivos que levaram a desconsiderar a aplicagdo NATS, assim como a alternativa que foi

implementada e por fim as funcionalidades existentes na aplicacéo.

4.1 Principio de funcionamento

Portanto seguindo o sistema anterior, existe somente um servidor onde todos os clientes
estdo conectados. Caso este servidor falhe, os clientes ficam sem forma de utilizar o servico.
De forma a evitar que isso aconteca, é necessario adicionar mais servidores, assim caso um
falhe existem outros que podem receber as conexdes. A isto nomeamos de ser horizontalmente
escalavel, caso um servidor falhe ou ndo seja capaz de aguentar o nimero de clientes atual,
existem outros servidores para receber estes clientes.

No entanto, quando falamos num sistema PubSub € necessario que quando um evento é
publicado num topico, este tem de ser transmitido para todos os clientes subscritos neste mesmo
topico, independentemente a qual servidor estes estdo conectados. Se olharmos para a figura 2,
temos os Servidores 1 e 2, e um cliente conectado a cada um. Estando ambos clientes subscritos
a0 mesmo topico € necessario que o0 evento que esta a ser publicado no servidor seja transmitido
para o Cliente 2, 0 que ndo acontece visto que o Cliente 2 ndo estd conectado no mesmo

servidor que recebe o0 evento.

Figura 2 - Sistema anterior

Servidor 1 Servidor 2

A) A

h h

Cliente 1 Cliente 2

Fonte: Prépria

18

MOD.IP. 108.R4.09.22

De forma a resolvermos este problema, tinha sido inicialmente planeado a utilizagcdo da
aplicacdo NATS, para realizar a intercomunicacédo entre os servidores.

O NATS.io (s.d.) € uma aplicacdo de mensagens de cddigo aberto que fornece um sistema
de mensagens de alta performance e baixa laténcia. Este é usado principalmente para conectar
diferentes partes de um sistema distribuido, permitindo que as diferentes partes se comuniquem
e troquem informacdes de maneira eficiente e confidvel. Inclusive, a aplicacdo €é utilizada de
forma a ter outros servigos a comunicar com a aplicacdo desenvolvida neste projeto, estes sdo
considerados servigos autenticados que podem utilizar uma API similar a de administracao.

Desta forma, o evento publicado pelo Cliente 1 é transmitido pelo NATS para todos 0s

servidores interessados no topico, assim como pode ser visto na figura 3.

Figura 3 - Intercomunicagdo com NATS

NATS
Evento | | Evento |
Servidor 1 Servidor 2
Fa)
' Evenm. ' Evento .
.
Cliente 1 Cliente 2

Fonte: Prépria

Com esta solucéo, foi observado um problema com a utilizacdo do NATS, sendo este a
ineficiéncia introduzida na passagem de um evento, principalmente quando é aumentado o
numero de servidores em funcionamento.

Na figura 4, existem 3 servidores e 3 instancias da aplicagdo NATS. Existe um nimero mais
elevado de servidores de forma a ter redundéancia em caso de falhas e de forma a ser capaz de
receber um maior nimero de conexdes. Nesta figura temos o Cliente 1 que publica um evento
que tem de chegar aos Servidores 2 e 3, para isso, assim que o Servidor 1 receba o evento

19

MOD.IP. 108.R4.09.22

publicado pelo Cliente 1, este tem de enviar o evento para 0 NATS 1, que por sua vez envia
para 0 NATS 2 e 3 que por fim enviam aos Servidores 2 e 3. Portanto, foi necessario que o
evento fosse passado 5 vezes por rede, relembrando que cada passagem exige a codificacdo da

mensagem por quem envia e descodificagdo por quem recebe.

Figura 4 - Ineficiéncia na intercomunicacao com a aplicacdo NATS

Servidor 3
Evento
MATS 3
Evento
Evento
MNATS 1 MATS 2
[E'n"ErItU'. . E‘u"EI'It'D.

Servidor 1 Servidor 2

Evento

Cliente 1

Fonte: Prépria

4.2 Alternativa a aplicacdo NATS

De forma a evitar esta ineficiéncia, podemos ter os servidores a comunicar entre si em vez
de utilizar a aplicacdo NATS como intermediério. Para isso, é necessario implementar algo que
seja capaz de substituir a utilizacdo da aplicacdo NATS, ou seja, é necessario resolver os 3

seguintes pontos:

» Consenso;
* Intercomunicacéo;
» Distribuic&o.
20

MOD.IP. 108.R4.09.22

O consenso consiste em ter conhecimento de quais servidores estdo ativos. A utilizacdo da
aplicacdo NATS evitava esta necessidade, afinal os eventos eram publicados no NATS e este
iria distribuir o evento por quem esta interessado. A intercomunicagdo consiste no envio de
informagdes e eventos entre os servidores. A distribuicdo consiste em como 0s topicos ou
channels sao distribuidos pelos servidores.

Se os servidores forem capazes de se comunicarem entre si, entdo o numero de vezes que
um evento tem de ser enviado por rede diminui, assim como pode ser observado na seguinte

figura 5.

Figura 5 - Intercomunicacéo direta

Servidor 3
0

Evento

Evento
Servidor 1 * Servidor 2

: Evento -

Cliente 1

Fonte: Prépria

Antes explicar como os 3 pontos mencionados foram resolvidos, sera explicado o porqué
de ser atribuido um conjunto de channels a um servidor de forma a que se torne mais claro o

porque do ponto “distribuicao”.
4.2.1 Centralizacdo do channel

Portanto, se seguirmos 0 modelo anterior, onde sempre que um evento é publicado este é
enviado para todos os servidores, iremos aumentar o nimero de vezes que um evento € enviado

por rede, assim como podemos enviar eventos para servidores que ndo tém interesse no evento.

21

MOD.IP. 108.R4.09.22

De forma a exemplificar, temos a figura 6 onde existem 6 servidores, cada um com um cliente
conectado, e todos estes subscritos ao mesmo topico ou channel.

Imaginando que todos os clientes querem publicar um evento no mesmo channel, cada um
dos servidores vai ter que enviar o evento recebido pelo cliente para todos os outros servidores.
Portanto cada servidor envia 5 mensagens, com 6 servidores sdo 30 mensagens enviadas como

pode ser visto na mesma figura na parte de baixo.

Figura 6 - Transmissdo de mensagens

Ewenta Evento
Cliente 1 — e 4 Servidor 1 Servidar 2 —_— Cliante 2
Evanto Eventa
Chiente 3 —_— Sarvidar 3 Servidor 4 — Chante 4
Eventa Eventa
Cliente S —e Servidor 5 Sarvidor B -— Chliente 8
Servidar 1 Servidaor 2
Servidar 3 Servidor 4
Servidar 5 Servidor B

Fonte: Propria

Caso um dos servidores ndo tenha interesse nos eventos enviados, assim que receber o
evento, ira descarta-lo, ou seja, uma mensagem enviada por rede que é desnecessaria.

Para enviar eventos apenas para servidores interessados no channel, cada servidor tem que
registar quais channels esta interessado, para isso, a aplicacdo Redis pode ser utilizada,
lembrando que também tem que existir varias instancias da aplicacdo Redis de forma a ter
redundancia.

Portanto, por cada vez um evento é publicado, o servidor tem de consultar a aplicacdo Redis

de forma a saber para quais servidores deve enviar o evento, assim como na figura 7.

22

MOD.IP. 108.R4.09.22

Figura 7 - Transmissdo com Redis

Redis

[Events
Servidor 2 —— Cliente 2

Evento
Cliente 1 —_—_— Sarvidor 1

Eventa

Cliente 3 B " Servidar 3 Servidor 4
. Ewanta .
Cliante 5 _—— Servidar 5 Servidor B

Fonte: Prépria

Embora este método permita evitar enviar mensagens desnecessarias, a necessidade de ter
de consultar outra aplicagdo externa por rede por cada evento publicado pode aumentar
consideravelmente a laténcia do envio de mensagens, e caso a aplicagdo Redis apresente falhas
o sistema em geral vai apresentar falhas.

Um método alternativo, consiste em atribuir a um servidor a responsabilidade de gerir um
conjunto de channels, ou seja, para publicar um evento num channel, este tem de ser enviado
para o servidor responsavel pelo channel. Desta forma conseguimos manter uma ordem no
envio de eventos assim como reduzimos a complexidade do envio de eventos e evitamos ter
que consultar uma aplicacdo externa por cada evento publicado.

Voltando ao exemplo anterior, que pode ser observado na seguinte figura 8, onde existem 6
servidores com um cliente conectado a cada, e todos clientes estdo subscritos ao mesmo
channel e todos querem publicar um evento. Neste exemplo, vamos assumir que o responsavel
pelo channel onde os clientes estdo subscritos e pretendem publicar é o Servidor 1. Portanto,
os servidores 2 a 6 vdo enviar o evento recebido pelos seus clientes para o Servidor 1 (5
mensagens), o Servidor 1 vai enviar os eventos publicados para os servidores 2 a 6, ou seja, 6

x 5 = 30 mensagens, tendo no total 35 mensagens enviadas por rede.

23

MOD.IP. 108.R4.09.22

Figura 8 - Channel centralizado

Evento Eventa

Cliente 1 —_— 4 Servidor 1 Servidar 2 —_— Cliante 2
Evento Eventa

Cliente 3 —_— Servidar 3 Servidor 4 -_— Chante 4
) Evento . X Evento

Cliente 5 —_— Servidor 5 Servidor 6 —_— Chiante &

Fonte: Prdpria

E verdade que sdo mais mensagens transmitidas do que no exemplo anterior, no entanto, se os
servidores forem capazes de saber qual o responsavel pelo channel evitam de ter de consultar
a aplicacdo Redis e a0 mesmo tempo a complexidade do sistema em geral € reduzida.
Adicionalmente, caso os eventos sejam todos publicados ao mesmo tempo, estes podem ser

agrupados e enviados huma s6 mensagem, ou seja, em vez das 30 passariam para somente 5.

Voltando aos 3 pontos anteriormente mencionados, sendo estes:
e Consenso;
e Intercomunicacdo;
e Distribuicéo.

Iremos comecgar com 0 consenso, 0 que este é, que opcdes foram avaliadas e qual foi a
escolhida.

4.3 Consenso

O consenso é um dos problemas fundamentais em sistemas distribuidos, este exige que
multiplos membros concordem em um conjunto de valores mesmo na presenca de falhas. Um
protocolo de consenso que seja capaz de tolerar falhas deve cumprir as seguintes propriedades:
terminacdo, sendo que eventualmente todos membros concordam com um valor; integridade,
caso 0s membros proponham o mesmo valor, entdo outros devem decidir no mesmo valor;
concordancia, todos membros devem concordar no mesmo valor. Algoritmos de consenso
tendem a confirmar um valor quando a maioria dos membros do cluster esteja disponivel, por
exemplo, um cluster de 5 membros pode continuar a operar com a falha de dois membros, no
entanto, caso mais que dois falhem estes deixam de conseguir alterar os valores e somente
retornam os valores previamente acordados.

Portanto, o consenso em sistemas distribuidos é um processo em que varios membros de um

sistema distribuido trabalham em conjunto para tomar uma decisdo em comum. Este processo

24

MOD.IP. 108.R4.09.22

€ necessario quando ha varios componentes no sistema e € preciso chegar a um acordo sobre
qual acdo deve ser tomada. Por exemplo, num cluster, € necessario que todos os membros
saibam qual membro é responsavel por determinada tarefa ou quais dados estdo disponiveis
em cada membro.

Para alcancar o consenso, os sistemas distribuidos utilizam algoritmos de consenso, como o
algoritmo Paxos ou o algoritmo Raft, que sdo projetados de forma a garantir que todos os
membros no sistema tenham a mesma visdo dos dados e das agdes a serem tomadas. Estes
algoritmos permitem que os membros elejam um lider ou coordenador que tomaré as decisdes,
enguanto os outros membros seguirdo as instrucées do lider.

O consenso em sistemas distribuidos é fundamental para garantir a consisténcia e a
integridade dos dados em todo o sistema. Neste sdo considerados os protocolos Raft e Gossip

como protocolos de consenso.

4.3.1 Raft

Raft € um algoritmo de consenso com propdsito de ser simples de compreender, este é
equivalente ao algoritmo Paxos a nivel de tolerancia de falhas e desempenho. Este atinge o
consenso através de um e somente um lider eleito. Neste protocolo, cada membro tem o cargo
de lider ou seguidor e pode ser um candidato caso um lider ndo exista. O membro com o cargo
de lider tem a responsabilidade de replicar logs para os seguidores, adicionalmente, este
regularmente informa os seus seguidores da sua existéncia através do envio de um heartbeat.
Cada seguidor tem um ciclo de intervalos de tempo em qual espera receber um heartbeat do
lider que é reiniciado sempre que o receba, no entanto, caso o intervalo de tempo termine sem
0 receber, entdo, o seguidor muda o seu cargo para candidato e comec¢a uma eleicdo para um
novo lider. Portanto, o protocolo Raft esta dividido fundamentalmente em duas partes: eleicéo
de lider e replicacdo de logs.

Quando o algoritmo inicializa ou um lider falha, um novo lider tem de ser eleito. Neste caso,
é iniciado um novo termo no cluster. Um termo € um periodo arbitrario no cluster para o qual
um novo lider precisa ser eleito, cada termo comecga com a eleicdo de um novo lider. A eleicao
de um lider é iniciada por um membro candidato, este aumenta o contador de termo, vota em
si mesmo como novo lider e envia uma mensagem para todos os outros membros a pedir o seu
voto. Cada membro s6 pode votar uma vez por cada termo, e estes votam a favor do primeiro
pedido de voto que receberam. Caso um candidato receba uma mensagem de outro membro

com um contador de termo superior entdo este é automaticamente desqualificado e muda o seu

25

MOD.IP. 108.R4.09.22

cargo de volta para seguidor. Caso um membro receba a maioria de votos entao este torna-se o
novo lider, caso exista um empate de votos entdo um novo termo € comecado e 0 processo €
repetido, adicionalmente, de forma a evitar ciclos de empate de votos, cada membro escolhe
um intervalo de tempo aleatdrio, com valores reduzidos, antes de voltar a tentar a nova eleigéo.

Quanto a segunda parte, a replicacdo de logs, esta é a responsabilidade do lider, este recebe
pedidos de clientes, sendo que cada pedido consiste num comando a ser executado e replicado
por todos membros do cluster. Apds o comando seja adicionado a lista de logs do lider, este
envia este comando para todos os seguidores. Caso os seguidores ndo estejam disponiveis, 0
lider volta a tentar enviar o comando por vezes indefinidas até que o log seja eventualmente
adicionado a lista dos seguidores. Assim que o lider recebe a confirmacao, de metade ou mais
dos seus seguidores, que o comando foi replicado, este aplica 0 comando ao seu estado local e
0 pedido é considerado como aplicado.

Este protocolo é utilizado quando é necessario que exista uma forte consisténcia de
informacdes no cluster, sendo permitido apenas ao lider realizar alteracdes, um exemplo
comum de utilizacdo deste protocolo pode ser encontrado nas bases de dados CockroachDB,
MongoDB, Neo4j, TiDB e YugabyteDB. Sendo que somente um membro do cluster € capaz de
realizar alteracdes, a capacidade do cluster é limitada pela capacidade do lider. De forma a
resolver este problema, é utilizado o Multi-Raft, este utiliza multiplos grupos tendo cada um o
seu lider e gerindo uma seccdo da informacdo. No caso de uma base de dados, podemos ter um
grupo por cada tabela e aplicar alteracGes a grupos separados aumentando a quantidade de
alteracdes possiveis e distribuindo a carga entre mais membros. Adicionalmente, caso somente
seja necessario a consulta de informacdes, esta pode ser realizada a qualquer seguidor, com o
risco de receber informacdo desatualizada ou entdo realizar a consulta ao lider para ter a

garantia de ter a Gltima informacao.

4.3.2 Gossip

O protocolo gossip ou protocolo epidémico consiste em um procedimento de comunicagdo
peer-to-peer que assimila a forma como as epidemias ou rumores se espalham, neste protocolo
cada membro de grupo periodicamente troca informagdo com outros membros sobre o seu
préprio estado e sobre o estado de outros membros. Este protocolo permite que um sistema
distribuido tenha a garantia que a informagdo € eventualmente distribuida por todos os
membros do grupo sem precisar de um sistema centralizado a coordenar esse aspeto. Visto ndo

precisar de um sistema centralizado este protocolo é dos mais robustos e escalaveis para

26

MOD.IP. 108.R4.09.22

consisténcia eventual dos membros do cluster, detecdo de falhas e permite o envio de

informacdes adicionais durante as trocas de informacéo.

Figura 9- Exemplo de cluster a utilizar protocolo gossip.

Node
/ 2
Node
1 N
Node
’/////// 5
L1
Node %
3
4

Fonte: Propria

Na figura 9 podemos ver um exemplo de um cluster com 5 membros, neste exemplo cada

membro comunica somente com outros 2 membros, assim como representado pelas setas. De

forma a propagar uma informacéo entre todos os membros seriam necessarios 3 ciclos, sendo

cada ciclo uma troca de informac&o entre os membros apds cada intervalo de tempo definido

no cluster. Uma exemplificacdo da propagacdo com origem no Node 1 pode ser observada na

figura 10.

27

MOD.IP. 108.R4.09.22

Figura 10 - Exemplo de propagacéo

1°Ciclo 2°Ciclo 3°Ciclo

Fonte: Proépria

No caso de um cluster com 40 membros e cada membro comunique somente com outros 4
membros seriam necessarios somente 4 ciclos. O artigo "Epidemic Algorithms for Replicated
Database Maintenance™ (Demers et al., 1987) descreve algoritmos de replicacdo de bases de
dados que usam a propagacdo de informac6es entre membros de um sistema distribuido, este
apresenta uma formula para estimar o tempo de convergéncia do algoritmo de propagacao de
informagdes com base no nimero de membros do sistema e na taxa de propagacdo de
informagdes. Essa formulaé T = O(log(N) / p), onde N é o niUmero de membros do sistema
e p é a taxa de propagacdo de informagdes e O(log(N)) o nimero de ciclos necessarios para
que a informacdo seja propagada por todo o sistema. Portanto, de forma a calcular
aproximadamente quantos ciclos sdo necessarios para a propaga¢do de uma informacao, iremos
nos focar apenas na parte O(log(N)), desta forma, iremos utilizando o seguinte calculo C =
logp(N) onde ¢ é o0 nimero de ciclos.

Portanto, com 40 membros e propagacdo de 4 temos log,(40) = 2.66, ou seja,
aproximadamente 3 ciclos, no caso de um cluster com 5 membros e propagacdo de 2 temos

log,(5) = 2.32 que também sdo aproximadamente 3 ciclos.

28

MOD.IP. 108.R4.09.22

Vendo o protocolo de alto nivel, num cluster, cada membro mantém uma lista de um
subconjunto dos membros a que tem conhecimento, os seus enderecos e alguns dados
adicionais (metadata), e periodicamente, cada membro atualiza na sua lista de “vizinhos” os
contadores de heartbeat de acordo com os dados emitidos por outros membros e envia a
informacao atualizada para alguns dos membros. Assim que um membro tenha recebido uma
das mensagens, esta junta a lista na mensagem com a sua lista e mantém os dados com o
contador de heartbeat mais elevado no caso de colisdes. Assim sendo, enquanto o valor do
contador for subindo para um membro é garantido que este esteja healthy (ativo e sem
problemas) e é considerado unhealthy (desativo ou com problemas) caso o contador de
heartbeat ndo seja aumentado durante um intervalo de tempo. Adicionalmente, durante a troca
de informac@es entre membros é possivel enviar informagdes extra como por exemplo, carga
média e memoria livre para que outros membros possam utilizar essa informacdo para
balancear a carga entre membros. Outra forma de explicar o protocolo gossip é comparando
com a disseminacdo de rumores numa comunidade. Assim como no protocolo gossip, um
rumor comega com uma pessoa que o compartilha com alguns amigos proximos. Esses amigos,
por sua vez, compartilham o rumor com outros amigos, e assim sucessivamente. Conforme o
rumor se espalha, este pode ser confirmado, negado ou até mesmo modificado por diferentes
pessoas ao longo do caminho. O resultado é uma ampla disseminacdo de informacdes pela
comunidade, com a possibilidade de chegar a um consenso ou opinido comum. Da mesma
forma, o protocolo gossip permite a disseminacdo de informagdes em sistemas distribuidos,
onde diferentes membros compartilham e modificam informac@es entre si até chegarem a um
consenso ou estado comum.

No caso deste projeto, o protocolo gossip € baseado em "SWIM: Scalable Weakly-consistent
Infection-style Process Group Membership Protocol” (Das, Gupta & Motivala, 2002) com
algumas modificacGes. A implementacéo foi criada pela empresa Hashicorp e foi nomeada de
Serf. Explicando de forma breve e incompleta, um membro comeca por se juntar a cluster ja
existente ou cria um novo, caso Se esteja a juntar, é realizada uma sincronizagéo completa com
um membro ja existente do cluster utilizado o protocolo TCP e depois comega a realizar trocas
de informacdo assim como referido previamente. Neste caso, a comunicagdo utilizada para
troca de informag6es utiliza o protocolo UDP com o nimero de propagacdo de intervalo
configuravel. Nesta implementacdo & apenas enviado alteracbes de informacdo com o
protocolo UDP. Mesmo ap6s um membro se juntar ao grupo algumas sincronizagdes completas

ocorrem com outro membro aleatdrio utilizando o protocolo TCP, no entanto, estas ocorrem

29

MOD.IP. 108.R4.09.22

com menor frequéncia, o intervalo destas transmissdes também pode ser configurado ou
desativado.

De forma a detetar uma falha, um pedido de verificacdo é enviado aleatoriamente num
intervalo de tempo configuravel, caso o destinatario falhe a responder dentro de um prazo de
tempo razoavel entdo um pedido de verificacdo é enviado indiretamente. Um pedido de
verificacdo indireto passa por pedir a um namero configuravel de membros para realizarem um
pedido de verificacdo ao membro, isto permite perceber se um membro ndo esté acessivel por
problemas que estejam a ocorrer na rede. Caso ambas tentativas falhem, entdo o membro é
marcado como suspeito e estas informacdes sdo enviadas para todo o cluster utilizado o0 mesmo
mecanismo de propagacao. Por fim, caso 0 membro suspeito ndo responda a suspeita num
intervalo de tempo configurdvel entdo o membro € considerado como morto, e novamente esta
informacédo é propagada pelo cluster. Outra funcionalidade desta implementacdo passa por
permitir 0 envio de eventos e consultas utilizando o mecanismo de propagacao, algo que pode
ser utilizado, por exemplo, quando a configuracdo do cluster muda e é necessario que esta

alteracdo seja propagada por todos os membros.

4.3.3 Escolha de protocolo de consenso

Tendo revisto as opcdes gossip e Raft, a opcdo escolhida para ser utilizada neste projeto
passa pelo gossip. Tendo como objetivo que todos membros concordem com quais membros
estdo ativos, o algoritmo Raft oferece mais funcionalidades do que as necessarias e mais
restricbes do que a opcao gossip, adicionalmente, ndo sendo necessario armazenar informacao
ou sendo exigido uma forte consisténcia de informacao é preferivel a utilizacdo do protocolo
gossip sendo este mais eficiente no consumo de recursos de processamento e de rede e permite
uma quantidade mais elevada de membros sendo que o algoritmo Raft tem o seu melhor
desempenho num cluster com 3 a 9 membros enquanto em gossip um ndmero muito mais
elevado é possivel, por exemplo, em gossip um cluster com 100 membros e propagacéo de 4
leva aproximadamente 3 ciclos a propagar a informacao.

A utilizagdo de ambos protocolos em simultaneo também é possivel, utilizando o protocolo
gossip de forma a manter uma lista de membros ativos, e utilizar o algoritmo Raft apenas para
gerir a consisténcia de informacdo, no entanto, como previamente mencionado, a utilizacdo do

Raft limite consideravelmente o nimero de membros a serem utilizados num cluster.

Utilizando o gossip, é possivel manter uma consisténcia eventual dos membros presentes no

cluster, e esta informacdo é somente utilizada de forma a realizar intercomunicacao entre 0s
30

MOD.IP. 108.R4.09.22

membros do cluster. N&o tendo o protocolo gossip como objetivo de enviar informacéo de
forma rapida, sera antes utilizada a informacdo que este gere para utilizar outro método de
envio de informac&o para o resto dos dados aplicacionais, adicionalmente, também é necesséario
organizar os membros de forma a evitar e reduzir o nimero de vezes que uma mensagem tem

de ser transmitida.

4.4 Intercomunicacao

De forma a realizar a intercomunicacdo entre membros existem varias possibilidades, no
entanto, as mais utilizadas sdo Apache Thrift, gRPC ou entdo usar diretamente uma conexao
TCP e gerir diretamente o envio de dados. De forma a simplificar e reutilizar conhecimento ja
existente na empresa, 0 método de comunicacédo escolhido é o gRPC.

O gRPC ¢é um framework de comunicacdo remota de alta performance, este permite que
aplicativos clientes e servidores troquem dados entre si de maneira rapida, confiavel e eficiente,
utilizando protocolos de comunica¢do padronizados e uma interface de programacao simples e
facil de utilizar. O gRPC é baseado no protocolo HTTP/2, o que significa que este suporta
funcionalidades avangadas, como streaming bidirecional e unidirecional, compresséo de dados
e multiplexacdo de pedidos. Este é frequentemente utilizado em sistemas distribuidos e em
arquiteturas baseadas em microservicos para facilitar a comunicacdo entre diferentes
componentes do sistema, outras funcionalidades deste framework podem ser consultadas no
apéndice A. De forma a serializar os dados enviados, o gRPC utiliza Protocol Buffers. O
Protocol Buffers (Google Developers, 2019) é uma tecnologia de serializacdo de dados também
desenvolvida pela Google, que permite que estruturas de dados sejam definidas em um formato
de linguagem neutra e compacta. Estas estruturas sdo entdo compiladas em cédigo fonte para
varias linguagens de programacdo, o que permite que as aplicacdes cliente e servidor possam
facilmente trocar dados estruturados entre si. Adicionalmente, os dados serializados utilizando
Protocol Buffers sdo geralmente menores e mais rapidos de serem processados do que outros
formatos de serializagdo, como 0 JSON ou 0 XML. Por fim, o Protocol Buffers é amplamente
utilizado em sistemas distribuidos, aplicativos mdveis e outras aplicacdes de alta performance.

Internamente o gRPC utiliza HTTP/2 e por consequéncia TCP, embora estes protocolos
sejam eficientes, 0 gRPC permite mudar o método de transporte utilizado, utilizando essa
funcionalidade, o transporte foi mudado para o protocolo KCP de forma a reduzir a laténcia da
comunicacgdo em troca de ser produzido mais trafego de rede. A utilizacéo deste protocolo vai

ser utilizado de forma experimental. Caso seja encontrado algum problema entdo sera revertido

31

MOD.IP. 108.R4.09.22

para o transporte normal do gRPC. Adicionalmente, embora o protocolo utilize UDP este
garante 0 envio de mensagens para os destinatarios assim como TCP, assim sendo, a perda de

informacdes ndo devera ocorrer tal como se fosse utilizado o transporte por defeito do gRPC.

4.5 Distribuicdo

Tendo uma forma de saber quais membros estdo presentes no cluster e forma de
comunicacdo entre cada membro, é necessario estabelecer a forma como estes serdo
organizados. De forma a aumentar e evitar problemas de desempenho, o cluster ndo tera
nenhum membro central que tera toda a responsabilidade ou que ird atribuir responsabilidades,
em vez disso, cada membro vai ser responsavel por um conjunto da carga a ser processada, e a
designacdo de qual membro tem qual responsabilidade vai ser definida através do hash ring.
Sendo um channel a parte onde ird ocorrer quase todo o processamento da aplicacdo, 0 nome

deste em conjunto o nome do hub véo ser utilizados como chave para distribuicao.

4.5.1 Hashing

O hash consiste numa fungdo que mapeia dados de entrada com um tamanho variavel em
valor de saida de tamanho fixo, alguns exemplos comuns de algoritmos de hash incluem MD5,
SHA-1, SHA-256 e SHA-512. E possivel utilizar uma funcéo de hash de forma a mapear chaves
a valores numa tabela, onde a funcdo de hash é utilizada para calcular um indice para a chave
que € utilizado para obter um valor armazenado numa tabela. As tabelas de hash sdo ideais para
armazenar informag&o que precisa ser acessada rapidamente. Neste caso, uma tabela de hash
poderia utilizar os identificadores dos membros como chaves, desta forma para calcular a qual
membro um channel pertence o seguinte calculo pode ser efetuado:

index = hash(channel) mod N
sendo index o membro, channel o identificador do channel e N o nimero de membros no

cluster. Existem alguns problemas relacionados com colisfes que ndo serdo mencionados.

45.2 Distributed Hash Table

Uma tabela hash distribuida, ou distributed hash table (DHT), é uma extenséo a tabela hash
em que divide a informagéo em varios servidores. Esta utiliza um algoritmo de hash de forma
a distribuir as chaves pelos membros do cluster, atribuindo a cada membro a responsabilidade
de gerir um subconjunto das chaves e valores. Comparando com uma tabela de hash, a DHT
oferece maior escalabilidade e tolerancia a falhas. O principal problema com a DHT neste

projeto, ocorre quando o0 nimero de membros do cluster € mudado, como por exemplo, devido
32

MOD.IP. 108.R4.09.22

a uma falha, quando isso ocorre, todas as chaves tém de ser redistribuidas de forma a ter em
conta um membro a menos. Vendo novamente o calculo anterior vemos que o valor de N
mudou, invalidando todos os calculos previamente realizados. Recalcular todos os valores
impacta significativamente o desempenho do cluster, visto que a informacao tem de ser movida
para 0S Seus NoOvos responsaveis, outro problema, é que embora somente um membro tenha
falhado, os responsaveis serdo muito provavelmente diferentes do que eram previamente.
Vendo as tabelas 1 e 2, sendo a primeira a representacdo dos membros no cluster e a segunda
0s membros atribuidos a cada channel vemos como a distribuicdo estd a ser realizada, no
entanto, imaginando que o membro “Node 1 falha, o valor de N passa 2 e o indice dos
membros desce em 1. O membro atribuido a cada channel terd4 de ser recalculado, com
resultado como natabela 3. Como pode ser observado, embora o balanceamento entre membros
fosse o resultado o esperado, também podemos observar que os channels "test:channel_um",
"test:channel_dois" e "test:channel_quatro” mudaram de responsavel, mesmo estando o
membro responsavel por estes, ainda operacional. Em poucos valores como neste exemplo, o
impacto seria negligivel, mas em escalas de milhares e acima a redistribui¢do de todos estes

membros pode tornar um cluster inoperacional enquanto processa todas estas alteracoes.

Tabela 1- Membros num cluster e seus indices

indice Membro
0 Node 1
1 Node 2
2 Node 3

Fonte: Prépria

Tabela 2- Mapeamentos de channels para membros de um cluster comn =3

Chave Hash Hash Mod N [N =3
test:channel_um 12013487716029574172 2 (Node 3)
test:channel_dois 6072146722532578387 1 (Node 2)
test:channel_tres 5352869851951309179 0 (Node 1)

test:channel_quatro 6795858808070030270 2 (Node 3)

Fonte: Propria

33

MOD.IP. 108.R4.09.22

Tabela 3- Mapeamentos de channels para membros de um cluster com n = 2

Chave Hash Hash Mod N [N =2
test:channel_um 12013487716029574172 0 (Node 2)
test:channel_dois 6072146722532578387 1 (Node 3)
test:channel_tres 5352869851951309179 1 (Node 3)

test:channel_quatro 6795858808070030270 0 (Node 2)

Fonte: Propria

4.5.3 Hash Ring

Portanto, de forma a evitar este problema, temos a técnica de anel de hash, ou hash ring,
esta técnica forma um anel virtual (figura 11), em que cada membro é responsavel por um
intervalo continuo de valores no anel. Exemplificando os cenarios anteriores podemos ver na
figura 12 como a distribuicdo dos channels € representada no hash ring. Portanto, tendo em
conta 0 mesmo exemplo, podemos ver na figura 13 o resultado do mesmo cenario de falha do
membro "Node 1". Como pode ser visto, somente um channel precisa de ser redistribuido, além
de serem precisos menos redistribuicdes, também podemos somente recalcular os channels a
que pertenciam aquele membro, tornando esta técnica ainda mais eficiente. Imaginando a
situacdo em que um novo membro se junta ao cluster com o nome "Node 4" e a sua posi¢ao no
anel é calculada entre 0 "Node 3" e "Node 2" podemos buscar todos channels a que o "Node
2" € responsavel e recalcular o seu responsavel, mais uma vez evitando recalcular todos os
channels. Utilizando esta mesma técnica, temos a possibilidade de saber quem podera ser o
préximo responsavel de um certo channel, algo que pode ser utilizado de forma criar um

sistema de redundancia.

34

Figura 11- Membros do cluster representados num anel virtual

Node 2

Node 3

Node 1

Fonte: Prépria

Figura 12 - Anel virtual com membros de um cluster e channels

MOD.IP. 108.R4.09.22

testichannel_quatro

tastchanne

testehannel_tres

Fonte: Propria

s
dols —~

35

MOD.IP. 108.R4.09.22

Figura 13- Anel virtual com membros de um cluster e channels com a falha de um membro

Nacde 3¢

Fonte: Proépria

45.4 Consisténcia Eventual

Portanto, utilizando gossip e consistent hashing conseguimos atribuir channels para
diferentes membros de forma a distribuir a carga pelo cluster, no entanto, tudo de forma
eventualmente consistente. Tendo o cluster consisténcia eventual € importante perceber no que
isto consiste. Portanto, a consisténcia eventual ¢ um modelo de consisténcia em sistemas
distribuidos em que as atualizaces feitas em um membro sdo propagadas para 0S outros
membros do cluster em um periodo ndo imediato, ou seja, pode haver um certo atraso até que
todos os membros recebam a mesma atualizacdo. Este modelo de consisténcia € utilizado em
sistemas que podem lidar com uma pequena inconsisténcia temporéaria na informacao, mas que
ainda garantem que eventualmente todos os membros terédo a mesma informagao. Assim sendo,
a consisténcia eventual pode apresentar alguns problemas, como a possibilidade de leituras
inconsistentes entre membros, ou seja, um membro pode ter informagdes mais atualizadas do
que outro. No caso deste projeto, visto ndo se tratar de um sistema que gere informacéao e onde
todas as informacdes importantes sdo armazenadas numa base de dados, a consisténcia eventual

ndo é problematica, e € utilizado como ferramenta para aumentar a escalabilidade do sistema.

36

MOD.IP. 108.R4.09.22

4.6 Novo sistema

Tendo agora as partes fundamentais do sistema, com o consenso a ser resolvido com o
protocolo gossip, a intercomunicagdo com o framework gRPC e a distribuigdo utilizando a
juncdo do gossip e hash ring, é importante perceber como estes irdo funcionar em conjunto.

Em primeiro lugar, temos a parte responsavel por chegar ao consenso de quantos membros
existem no cluster, esta parte assim como previamente referida € gerida pelo protocolo gossip.
Portanto, sempre que um novo membro se junta ou sai do cluster, este ird refletir no hash ring.
Lembrando, que no hash ring vdo ser mapeados todos os identificadores dos membros do
cluster. Assim sendo, quando precisamos de distribuir um channel ou localiza-lo, sera
calculada a localizacdo do channel no hash ring utilizando o identificador deste. Sabendo a
posicdo no hash ring, podemos facilmente calcular a qual membro o channel pertence.
Portanto, quando um membro sai ou se junta, a sua posi¢cdo serd adicionada ou removida do
hash ring e potencialmente sera necessario recalcular a quais membros os channels pertencem.

O ponto de intercomunicacdo, neste sistema € introduzido quando é necessario enviar
informacdo entre membros, por exemplo, publicar um evento num channel, exige que um
pedido seja feito ao membro responsavel por este, ou seja, uma conexao serd criada ou
reutilizada ao membro destino onde sera enviado o pedido para publicar o evento. Assim como
mencionado, esta intercomunicacdo sera realizada com o framework gRPC, de forma a saber
os enderecos para qual a conexao seré criada, sera utilizado o protocolo gossip para descobrir
esses enderecos.

Portanto, o protocolo gossip € o elemento principal destes trés pontos, este em jungdo com
0s outros dois pontos permite ter bases para a criacdo de um sistema distribuido.

Exemplificando o funcionamento destes componentes temos a figura 14 e figura 15. Nesta
figura temos um cluster com os Nodes 1, 2 e 3, sendo que no Node 1 est4 conectado o Cliente
1 e no Node 3 esta conectado o Cliente 2, assim como representado na parte esquerda da
primeira etapa da figura. Na parte direita, temos 0 mapeamento dos 3 Nodes representada no
hash ring. Neste exemplo, o Cliente 1 subscreve ao channel “product 1", portanto o Node 1
calcula no hash ring a posicdo deste channel que resulta no Node 2 assim como representado
na segunda etapa. Sendo o Node 2 o resultado obtido, significa que este é o responsavel pelo
channel “product 17, portanto, o Node 1 vai estabelecer uma conexao bidirecional utilizando
o framework gRPC com o Node 2, assim como pode ser visto na terceira etapa. Assim que a
conexdo é estabelecida e a intencao de subscrever é enviado para o Node 2, este cria o channel

(caso ndo exista), adiciona o Cliente 1 a lista de subscritos e vai enviar todos os futuros eventos

37

MOD.IP. 108.R4.09.22

que receber para 0 Node 1 e este para o Cliente 1. Na quarta etapa, o Cliente 2 pretende enviar
um evento para 0 mesmo channel, para isso, 0 Node 3 repete 0 mesmo processo anterior e
estabelece uma conexdao com o Cliente 2. Por fim, na quinta etapa o Node 3 envia o evento
recebido para o Node 2, que por sua vez envia para 0 Node 1 e que por fim envia para o Cliente
1.

Figura 14 - Exemplo de funcionamento parte 1

1 - Representagao do cluster e o seu mapeamento no hash ring.

Cluster e dois clientes Mapeamento no hash ring
wooe
— 13
.w-—n — .:. —— S
e\ ‘4‘, ,,"
//
A" A"
l‘ ,‘
/ em

Fonte: Prépria

38

MOD.IP. 108.R4.09.22

Figura 15 - Exemplo de funcionamento parte 2

5 - O evento publicado pelo Cliente 2 é enviado para o Cliente 1

Node

Evento (_/’JBEE/ 2
Climste 1 ¢

- 1 Evento

§
Evento

Evento Node

Gasne § ———? 3

Fonte: Prépria

Desta forma temos os 3 componentes em funcionamento, protocolo gossip para manter uma
lista de Nodes ativos, o hash ring para distribuir os channels pelos Nodes e o framework para
gRPC para comunicar entre os membros do cluster ou Nodes.

Existe ainda um ponto, relativamente & inicializagdo do cluster, ou como este é
primeiramente formado, sendo que a mutagdo deste é gerida também pelo protocolo gossip,

gue serd mencionado mais a frente.

4.7 Funcionamento

Nesta parte, sera explicado em mais detalhe o funcionamento dos componentes da aplicacéo,
desde a sua inicializacdo até a sua terminagdo, comecando pela inicializacdo da aplicagdo e
como um cluster é iniciado, seguido 0s seus componentes mais importantes e funcionalidades

destes.

4.7.1 Inicializar

Para iniciar um cluster é necessario a existéncia de mais que uma instancia da aplicacdo. A
uma destas instancias é indicado os enderecos de rede da outra, para que uma conexdo seja
estabelecida. Assim que estabelecida, ambas instancias formam um cluster de acordo com o
protocolo gossip, e novas instancias tém de se juntar ao cluster utilizando o mesmo processo.

Para este processo, é necessario o conhecimento dos enderegos de rede das novas instancias
da aplicacéo, algo que costuma ser gerido por um service discovery, ou descoberta de servicos.
Este é um servico utilizado em arquiteturas de sistemas distribuidos para encontrar e se

conectar a servigos disponiveis numa rede, este tem um endereco de rede conhecido por todas
39

MOD.IP. 108.R4.09.22

aplicacGes que o usam para registarem a sua presenca e publicarem informacdes sobre si,
tornando mais facil para outros servicos localiza-los e se comunicarem com eles. Isto permite
que os sistemas distribuidos sejam mais flexiveis, escalaveis e resilientes, uma vez que 0s
servigos podem ser facilmente adicionados ou removidos sem afetar a operacdo geral do
sistema.

Na empresa ndo existe um service discovery, visto que o NATS serve como um Servicgo
central que permite a comunicacao entre servigos, evitando assim a necessidade de um service
discovery. Portanto, para esta aplicagdo um service discovery seria Gtil, mas visto a inexisténcia
de um, foram utilizados meios mais simples de forma a descobrir outras instancias desta

aplicacao.

AWS ECS

O servigo AWS ECS (apéndice B), é onde a aplicagdo vai ser executada, utilizando Docker
containers. Este servico oferece uma API, que permite que sejam consultadas informac6es
sobre as instancias em execucdo. Portanto, quando uma nova instancia é criada, esta utiliza esta
API, para consultar todas as placas de rede do mesmo tipo da aplicagdo, retornando assim 0s
enderecos de rede a que estas € atribuido, com estes enderecos a aplicacdo realiza um pedido

para se juntar ao cluster, que sera aceite caso as credenciais da nova instancia estejam corretas.

UDP

Para ambientes locais de desenvolvimento, é utilizado o UDP Broadcast. Sendo isto uma
técnica de comunicagdo em rede que envia mensagens de um emissor para varios dispositivos,
sem que 0 emissor precise saber exatamente quem sdo esses dispositivos ou onde estes estdo
localizados na rede. Nesse método, o emissor envia uma mensagem de difusdo (Broadcast)
para um endereco IP especial, que é reconhecido por todos os dispositivos conectados na rede.
Assim, todos os dispositivos conectados na rede que estdo a escuta nesse endereco IP especial,
podem receber a mensagem enviada pelo emissor. Quando 0s outros membros recebem a
mensagem enviada, estes podem anunciar sua presenca na rede e permitir que outros membros

os descubram de maneira facil e rapida.

472 Hub

Um hub é um elemento que representa um tenant na aplicacdo, cada Hub tem as suas
préprias configuracbes, método de autenticacdo, channels, namespaces e € o elemento que

agrupa as sessoes de clientes para cada tenant. Adicionalmente, cada hub é representado por
40

MOD.IP. 108.R4.09.22

um identificador de texto que seja codificavel em UTF-8. De forma a evitar criar cada hub
explicitamente, este pode ser criado de forma dindmica pelo cliente ou servico utilizando
configuracdes por defeito.

Ao iniciar um hub as suas configurac6es sdo consultadas a base de dados, e caso ndo existam
estas sdo criadas de acordo com as configuragdes por defeito. As configuracdes por defeito sao
definidas através de um ficheiro de configuracdo necessario para inicializar a aplicacdo. Apos
0 hub ser criado e inicializado, este finalmente est4 pronto para criar sessbes e channels. De
forma a evitar que um hub que nédo esteja a ser utilizado se mantenha ativo em memoria, é
definido um intervalo de tempo que comeca sempre que 0 humero de sessdes no membro em
questdo chegue a zero, adicionalmente, caso uma nova sessao seja criada, o intervalo de tempo
é cancelado e o hub permanece ativo. Caso o intervalo de tempo termine, o hub é terminado.
Durante a sua terminacdo qualquer nova sesséo ou criagdo de channel que pertenca a este hub
serd posto em espera até que o processo termine. A terminacdo do hub é praticamente
instantanea, no entanto, existe a possibilidade de que um pedido para a criacdo de um channel
ou sessao seja recebido durante a sua terminacdo. Nestes casos, 0 hub é primeiro terminado e

nova instancia é de seguida criada para responder a estes pedidos.

4.7.2.1 Configuracbes

Cada hub tem um conjunto de configuracdes que serdo utilizadas para cada sessdo a que
este pertence. Adicionalmente, este também define um conjunto de regras para os channels que
ainda néo tenham configuragdes definidas.

Default Public

Comecando pela configuracdo Default Public, este apenas define se todos os channels que
pertencem a este hub sdo de acesso publico por defeito, ou seja, este ndo necessita que o
utilizador esteja autenticado ou que tenha autorizacdo definida para aceder a este. Esta
configuracdo permite que novos utilizadores ainda nao registados sejam capazes de subscrever
a informacdo recebida no channel em questdo. Esta configuracdo pode ser ignorada caso

estejam definidas regras mais especificas para esta channel.

Allow Anonymous

Embora a configuracdo Default Public permita que utilizadores ndo autenticados tenham
acesso aos channels, existe a possibilidade que o Hub ndo queira permitir utilizadores nédo

autenticados, € nestes casos que a funcionalidade Allow Anonymous pode ser ativada. Portanto,
41

MOD.IP. 108.R4.09.22

um Hub pode permitir somente utilizadores autenticados enquanto define channels de acesso
publico, permitindo que qualquer sessdo autenticada tenha acesso a estes channels sem que

uma permisséo explicita seja definida.

User Channel

A configuracdo User Channel permite que o hub crie automaticamente um channel para
uma sessao que esteja autenticada. Este channel é partilhado por todas sessfes que pertencam
ao mesmo utilizador. O identificador do channel é definido utilizando um namespace de
utilizador que por defeito ¢ “u” e a jungao do identificador do utilizador com um separador “:”
no meio, ou seja, um utilizador com o identificador “user 123 resultaria no identificador
“uuser_123”. Este channel pode ser utilizado quando é necessario que eventos sejam
publicados para um utilizador em especifico, como por exemplo, uma mensagem. Sendo que
este channel é partilhado por todas as sess6es do mesmo utilizador, existe a possibilidade que
um dos dispositivos emita eventos para os outros. Um exemplo da utilizacdo desta
funcionalidade, passa por um utilizador com uma wishlist (lista de produtos desejados), onde
num dos dispositivos o utilizador adiciona ou remove um item da sua wishlist e um evento com
esta alteracdo é enviado para os outros dispositivos, estes por sua vez podem atualizar a sua
informacdo local da wishlist de acordo com o evento recebido, permitindo desta forma a

sincronizacao em tempo real da wishlist.

Default Rules

Por fim, temos o Default Channel Rules, este € um identificador para as defini¢cdes a serem
utilizadas por defeito em channels sem configuracdes definidas. As configuracdes disponiveis
para cada Channel Rule serdo mencionadas durante os channels. Portanto, em vez de definir
configuracBes para todos os channels é possivel escolher configuracdes que vao ser aplicadas
a todos os channels pertencentes ao hub, no entanto, caso configuragdes mais especificas

estejam definidas essas vao se sobrepor a esta.

4.7.2.2 AtualizagOes

Cada membro do cluster, mantém as configuragdes do hub em memoria de forma a reduzir
0 numero de consultas a base de dados e a reduzir o tempo que demora a criar uma Sessao.
Visto o hub ser somente responsavel por agrupar channels, sessdes e configuracfes, ndo é
necessaria coordenacao deste entre os membros do cluster. No entanto, sempre que houver uma

atualizagdo, é necessario que todos 0s membros do cluster atualizem as suas configuragdes em
42

MOD.IP. 108.R4.09.22

mem©aria. Assim sendo, sempre que uma alteragdo as configuragbes de um hub ocorra, o
protocolo gossip € utilizado para propagar a informacéo de que a configuracao foi modificada.
Por fim, os recetores por sua vez tém a responsabilidade de realizar uma consulta & base de
dados de forma a buscarem as configuragcdes mais recentes. Se por algum motivo, 0 membro
do cluster ndo receber uma mensagem a notificar que as configuracdes foram alteradas, existe
um temporizador configuravel, que quando este termina o hub volta a consultar as suas

configuraces e atualiza para as mais recentes.

4.7.3 Channel Rules

De forma a definir as configuracGes diferentes entres channels e namespaces existe um
objeto que define todas configuracdes possiveis de um channel, com o nome Channel Rules,
que também serd referenciado como configuracdes. Cada configuragdo tem como identificador
um valor de texto em conjunto com o identificador do hub a que pertence, ou seja, uma chave
composta. Utilizando uma chave composta, é possivel utilizar nomes iguais de configuracoes

entre hubs, isto facilita a criacdo de configuracfes e manutencao destas.

4.7.3.1 Funcionalidades

As configuracOes possiveis poderdo nao ser suportadas por todos tipos de channels, algo
que serad explicado durante a informacédo sobre channels, assim sendo, existem as seguintes

configurac@es disponiveis:

o Allow Retain Message;
o Store Message;

e Push Message;

e Presence;

« Public;

e Client Publish;

e Allow Anonymous;

e Occupancy.

As configurac6es Public e Allow Anonymous funcionam exatamente da mesma forma como
as configuragcBes no hub, no entanto tém como alvo um channel em especifico ou num
namespace. O resto das funcionalidades serdo mencionadas a seguir em conjunto com 0s

channels.

43

MOD.IP. 108.R4.09.22

4.7.4 Channel

Um channel é o elemento onde as informagdes sao recebidas, processadas e enviadas. Este
é 0 elemento que é coordenado entre os membros do cluster utilizando consistent hashing. Este
é semelhante a um tépico em outras aplica¢cdes PubSub, no entanto, neste caso o channel pode
ndo ser somente um topico para PubSub.

Em geral um channel sé existe num tnico membro do cluster ao mesmo tempo, no entanto,
em certos casos existe a possibilidade que mais que uma instancia do mesmo channel esteja
ativa. Um exemplo deste caso pode ser observado quando um novo membro € adicionado ao
cluster, neste caso existe a possibilidade de que este seja 0 novo responsavel pelo channel, e
enquanto a informacéo de que o0 membro foi adicionado ao cluster ndo seja propagada para o
antigo responsével pelo channel este vai continuar a assumir a sua responsabilidade por este.
Todos os membros que tenham conhecimento do novo responsavel pelo channel véo enviar
eventos para este, enquanto membros que ndo tenham ainda recebido essa informacdo vao
enviar para o antigo responsavel. Caso o antigo responsavel ja tenha recibo a informacao este
ird recusar todos os eventos que receba para o channel em questéo.

Em casos em que o membro falha, todos os channels a que este era atribuido irdo fica
temporariamente indisponiveis até que a sua falha seja propagada pelo cluster e um novo

responsavel seja atribuido.

4.7.4.1 Inicializagdo

A inicializacdo de cada channel funciona de forma similar a de um hub, é realizada uma
consulta para as configuracdes do channel que é representada pelas configuragdes previamente
mencionadas, que sdo também mantidas em memdria. Posteriormente, € iniciado um ciclo para

processar mensagens em espera e € iniciado um processo similar ao de terminacgdo de um hub.

4.7.4.2 Atualizacdo

Tendo em conta que um channel somente utiliza as configuragdes de um Channel Rules é
necessario que sempre que este seja atualizado que essa informacé&o seja propagada utilizando
0 mesmo mecanismo que € utilizado para as configuracdes de um hub. Por fim, quando o
membro receber essa informacdo, este ird consultar a base de dados para atualizar para a nova
informagdo e ird atualizar todos channels que estejam a utilizar o Channel Rules. Na
eventualidade de ser aplicada uma configuragdo para um channel em especifico, entdo

utilizando gRPC o membro responsavel pelo channel serd notificado da atualizacdo. Para

44

MOD.IP. 108.R4.09.22

namespaces 0 mecanismo de propagacdo também é utilizado, e todos os channels do hub que
tenham o namespace irdo reavaliar qual Channel Rules sera utilizado. Em certos casos, existe
a possibilidade de que um membro nédo receba a informacdo devido a problemas de rede. De
forma a garantir que eventualmente a informacdo é atualizada, cada channel inicia um intervalo
de tempo interno, que sempre gque termina é consultada novamente a base de dados de forma a

buscar a ultima informacéo e é novamente comecado o intervalo de tempo.

4.7.4.3 Processamento de mensagens

As mensagens nos channels sdo processadas serialmente de forma FIFO (First In, First
Out), ou primeiro a entrar, primeiro a sair. Embora o processamento de todos channels seja de
forma concorrente, o processamento de mensagens de cada channel ocorre de forma
sequencial, permitindo manter a ordem das mensagens. No entanto, devido a consisténcia
eventual do cluster, a ordem de mensagens pode ndo se manter nos primeiros tempos apos a
alteracdo dos membros do cluster devido a possibilidade de existéncia de 2 instancias de um

channel no cluster assim como previamente mencionado.

4.7.4.4 Tipos de channels

Sendo o channel o elemento distribuido pelo cluster, este vai ser utilizado para implementar
diferentes funcionalidades que usam 0s mesmos mecanismos de distribuicdo, reduzindo a
complexidade de manter varias implementacdes de distribuicdo. Atualmente, existem 3 tipos
de channels, sendo possivel adicionar mais. Durante a implementagdo de um tipo de channel,
pode ser decidido ndo implementar algumas funcionalidades definidas no channel rules, seja

por ndo ser aplicavel ou por ndo ser necessario.

4745 Default

O tipo de channel Default ou normal, consiste num simples tépico PubSub, onde mensagens
podem ser publicadas e distribuidas por todos os clientes interessados. Estas mensagens sao
processadas de forma sequencial sempre que possivel. Este tipo de channel é capaz de utilizar

todas as funcionalidades definidas no channel rules.

4.7.4.6 Document

O tipo de channel Document, tal como o nome indica, consiste num documento com
estrutura similar a JSON, onde clientes podem pedir para realizar operagdes que depois sao
transmitidas para clientes interessados no channel. As operac6es no documento séo baseadas

45

MOD.IP. 108.R4.09.22

no RFC 6902 (IETF, 2013), nomeado de JavaScript Object Notation (JSON) Patch,
adicionalmente, o tipo de dados binario é permitido neste documento ao contrario do formato
JSON. Embora seja baseado num documento JSON, esta versao utiliza Protocol Buffers para
que possa ser serializado em binério de forma eficiente e mais compacta. Este tipo de channel,
permite que multiplos clientes tenham um conjunto de dados sincronizados engquanto estes sao
alterados. De forma reduzir a quantidade de informacdo a ser enviada por rede, em cada
alteracdo realizada ao documento, somente as alterac6es sao enviadas e cabe ao cliente aplicar
as alteragdes a sua versdo do documento local.

Cada documento € armazenado na base de dados, a cada intervalo de tempo de configuravel
ou quando o channel é terminado. O documento é serializado em binario, comprimido e por
fim armazenado. No caso de o membro falhar, qualquer alteracdo ndo guardada ira
naturalmente ser perdida. De forma a evitar perder alteracOes, todas as alteragfes ndo guardadas
serdo armazenadas numa lista na aplicacdo Redis para que quando o channel volte a ser
inicializado este seja capaz de reconstruir o documento até ao estado anterior.

O documento suporta as seguintes operacdes: add, remove, replace, move e copy. A
operacdo add, tal como o nome indica consiste em adicionar uma propriedade ao documento.
O remove, remove uma propriedade, replace substituir uma propriedade e move e copy consiste
em utilizar uma propriedade do documento e mover ou copiar para 0 novo destino.

Cada operagdo no documento pode ser representada com as seguintes propriedades:

e 0p - O tipo de operacdo a ser aplicada;

e path - O caminho no documento onde a operacdo sera aplicada, por exemplo, o path
“a/b/c” define que existe uma hierarquia onde a € o nivel acima de b e b de c.
Adicionalmente, tendo a e b propriedades associadas estas serdo convertidas, caso
necessario, na representacdo de um objeto em JSON. De forma a trabalhar com listas,
indices podem ser utilizadas no path, por exemplo, o path “a/0” define que a € uma lista
e a operacdo seré realizada no indice 0, mais uma vez, a sera convertido numa lista caso
necessario;

o from - Em alguns comandos como o copy e move é necessario providenciar um caminho
de fonte e um caminho de destino, sendo esta a fonte e o path o destino;

« value - Por fim, o value representa o valor a ser utilizado, este pode ser qualquer tipo

permitido pelo documento incluindo objetos complexos com multiplos valores.

46

MOD.IP. 108.R4.09.22

Cada pedido de alteracdo ao documento pode conter varias operacdes, e Sdo estas que Sao
transmitidas aos outros clientes para que estes as apliguem localmente. Este documento é
acompanhado de um nimero incremental que representa a sua versdo que é atualizado por cada
pedido de alteracdo realizado, este € utilizado para que os clientes consigam perceber se
perderam alteracGes e para que possam comparar com a sua versao local. Por fim, este tipo de

documento também suporta a funcionalidade de PubSub do channel Default.

4.7.4.7 Notification

O tipo de channel Notification, tal como o nome indica, tem como objetivo gerir as
notificacdes. Este permite a criacdo de notificacdes e gerir o seu estado de leitura de forma nao
individual, ou seja, todos clientes no channel partilham o mesmo estado de leitura. A criacdo
de notificagcbes ndo pode ocorrer através de clientes, somente através de outros servicos
autenticados, no entanto, o cliente tem a capacidade de marcar as notificagdes como lidas. Este
channel gere o numero de notificacBes ndo lidas, enviando o numero para o cliente sempre que
este seja alterado, ou seja, caso o channel tenha 2 notificacdes ndo lidas, esta informacéo sera
enviada para o cliente, caso o cliente marque uma como lida, entdo o channel envia a
informagdo de qual notificagéo foi lida para que atualizem a sua informacédo local e volta a
enviar a quantidade de notificacdes ndo lidas. Ao contrario dos outros tipos de channels, a
grande parte das funcionalidades do channel rules, ndo sdo suportadas, sendo possivel somente

utilizar as funcionalidades Public e Allow Anonymous.

4.7.4.8 Extensao

Assim como visto nos tipos de channels anteriores, é possivel reutilizar o método de
distribuicdo do channels e criar um tipo que se adapte a situacao necessaria. Por exemplo, um
channel para conversagdes ou para rastreamento de encomendas pode ser criado utilizando
funcionalidades j& existentes e adicionando especificas para 0 caso necessario.
Adicionalmente, devido as funcionalidades desenvolvidas de forma modular em cada channel
é possivel criar um channel que suporte todas funcionalidades previamente mencionadas ao
mesmo tempo, um exemplo disto pode ser observado no tipo de channel Document, onde todas
as funcionalidades do Default estdo presentes enquanto adiciona a funcionalidade do

documento.

47

MOD.IP. 108.R4.09.22

4.7.49 Funcionalidades

Utilizando as channel rules é possivel definir quais funcionalidades devem estar ativas num
channel, no entanto, nem sempre o channel tem suporte para as funcionalidades, como
previamente mencionado. Atualmente existem 9 funcionalidades definidas, e com suporte para

a adicdo de novas.

Retain Message

A funcionalidade, retain message faz uma copia da Gltima mensagem marcada para ser
retida e armazena-a em memoria local e na aplicagdo Redis para que possa ser recuperada. Esta
mensagem, € depois enviada sempre que um cliente subscreva a este channel. Esta
funcionalidade é baseada na funcionalidade do protocolo MQTT, esta é util para casos em que
é necessario que novos clientes que subscrevem ao channel tenham a Gltima informacéo
publicada no channel. Um exemplo simples para esta funcionalidade passa por ter um channel
para receber o stock atual de um produto, desta forma o cliente sabe qual a Gltima atualizacéo

de stock e ira receber novas atualizagdes.

Store Message

Em certos casos é necessario que algumas mensagens figuem armazenadas para serem
acedidas posteriormente, assim, com esta funcionalidade, qualquer mensagem enviada
marcada para ser armazenada ira ser primeiro armazenada na base de dados e s6 depois enviada
para os clientes. Esta funcionalidade é bastante til quando € preciso manter um historico de
mensagens, como por exemplo, um chat ou entdo manter um registo para auxiliar a depuracéo

de um problema.

Push Message

Esta funcionalidade esta mais relacionada com aplicacdes méveis embora também funcione
com aplicagbes Web. Esta consiste em enviar uma notificagdo Push utilizando as plataformas
nativas da Apple (APNS - Apple Push Notification Service) e Google (FCM - Firebase Cloud
Messaging) para os dispositivos moveis, e aplicagdes Web com o FCM. Assim como as outras
funcionalidades, esta é ativada quando uma mensagem marcada com esta funcionalidade é
recebida, embora a notificagdo seja enviada, a mensagem continua a ser enviada para os clientes
subscritos ao channel. Ao contrério das outras funcionalidades, o envio da notificacdo nao é

garantido ficando ao cargo das plataformas o seu envio.

48

MOD.IP. 108.R4.09.22

Presence

Esta funcionalidade permite o rastreamento da presenca das sessdes subscritas num channel.
Sempre que uma nova sessao se subscreva ao channel, esta recebe o estado atual da presenca
de todas as sessfes atualmente subscritas, enquanto as outras sessdes subscritas no channel
recebem um evento de que uma nova sessdo subscreveu ao channel. Apds ter recebido estado
inicial, a sessdo s0 ira receber alteracbes que ocorram, COMo uma nova sessao subscreveu ou
uma sessdo removeu a sua subscricdo. A presenca de cada cliente é definida pelo seu
identificador de sess&o, identificador de utilizador caso existente, metadados definidos durante
a autenticacdo e uma timestamp de quando se subscreveu. Esta informacéo é gerida dentro do
channel, em memoria e ndo é armazenada, portanto, caso o0 membro do cluster falhe esta

informac&o tem de ser reconstruida na nova instancia do channel.

Public

A funcionalidade Public é igual a previamente descrita no hub como Default Public, sendo
que esta se aplica num nivel diferente. Esta define que os channels afetadas pela configuracéo
sdo de acesso publico, ou seja, qualquer sessdo pode se subscrever aos channels sem ter

permissdes definidas.

Client Publish

Esta funcionalidade define se as sessfes podem publicar informacgédo no channel. Em casos
em que o channel é publico, nem sempre existe o interesse de permitir que as sessdes publiquem
eventos neste. Nesses casos, a publicacdo de eventos no channel pode ser desativada para todas
sessbes, sem precisar de definir permissdes especificas na autenticacio de uma sessdo. E
possivel sobrepor a esta configuracdo caso a sessao tenha permissdo definida para escrita neste
channel, dando assim a capacidade a somente algumas sessdes de publicarem eventos.

Allow Anonymous

Novamente, esta funcionalidade, simplesmente define se utilizadores ndo autenticados
podem aceder a este channel. Esta funcionalidade € util quando é necessario ter um channel

publico com a funcionalidade public, mas que so utilizadores autenticados tém autorizacéo.

49

MOD.IP. 108.R4.09.22

Occupancy

A funcionalidade occupancy permite rastrear a quantidade de clientes subscritos ao channel,
é uma versdo mais leve do que a funcionalidade Presence sendo que esta sé gere um contador
em vez de uma lista de sessdes. Esta funcionalidade pode ser utilizada, em casos em que é
necessario mostrar quantos utilizadores estdo neste momento a ver um produto ou informacao,
enquanto consome menos recursos do que a funcionalidade Presence. Ter ambas
funcionalidades ativas é completamente redundante visto ser possivel calcular o nimero de

cliente com a funcionalidade Presence.

Channel Live History

Outra funcionalidade aplicada apenas a channels default, e opcionalmente desativada nas
configuragdes da aplicacdo é a Live History, esta mantém as Ultimas mensagens enviadas nos
channels em memoria. Esta funcionalidade, tem como objetivo prevenir a perda de informacao
durante desconexdes rapidas, principalmente em dispositivos mdveis, por exemplo, durante a
troca de rede ou durante passagem num tunel. O nimero de mensagens armazenadas e a

ativacdo da funcionalidade podem ser definidas nas configuragdes da aplicagéao.

Terminagéo

Um channel naturalmente consome recursos de memdaria e de processamento, portanto, de
forma a reduzir os channels que estejam sem uso, um mecanismo similar ao do hub é utilizado.
No caso do channel, sempre que o nimero de sessBes subscritas chegue a 0 um intervalo de
tempo configuravel comeca e caso ndo ocorra nenhuma nova subscrigdo o channel é terminado

limpando toda a memoria local incluindo as mensagens da funcionalidade live history.

475 Namespace

O namespace € uma forma de agrupar channels a um conjunto de regras, em vez de definir
um channel rules para cada channel individualmente. E possivel definir um namespace
atribuir-lhe um channel rules e todos os channels dentro do namespace utilizam o mesmo
channel rules. Um namespace é somente aplicavel no hub a que este pertence, podendo existir
configuracOes diferentes para 0 mesmo identificador de namespace em varios hubs.

Um channel é considerado pertencente a um namespace caso o seu identificador comece
com o identificador do namespace. Por exemplo, um channel com identificador

“product:id 1 stock™ ¢ considerado como pertencente ao namespace “product”, sendo

50

MOD.IP. 108.R4.09.22

T3¢ 3]

utilizado ““:” como separador. Somente o texto até ao primeiro separador ¢ avaliado como
namespaces, caso um separador ndo esteja presente no channel, entdo este ndo pode pertencer
a um namespace. Esta funcionalidade é especialmente importante em casos em que o channels
podem ter nome dindmicos, mas é necessario que estes contenham as mesmas regras, utilizando
0 exemplo descrito podemos definir um conjunto de regras para todos os channels com

informacao de stock dos produtos sem precisar de definir cada um individualmente.

4.7.6 Regras de Channel, Namespace e de Hub

Existindo channel rules para channels, namespaces e hubs € necessario definir quais
channel rules se aplicam quando varios estdo presentes a diferentes niveis. Assim sendo, 0
objetivo é seguir sempre a regra mais especifica sendo a ordem de prioridade channel,
namespace e por fim hub, ou seja, caso um channel tenha regras definidas para o seu
identificador estas tém prioridades perante as definidas no namespaces e hub. Caso ndo exista
para o channel, mas exista para o seu hamespace entdo esta tem prioridade perante as do hub,
por fim, ndo existindo mais niveis, qualquer channel que néo tenha regras definidas para o seu

identificador ou namespace pertencente ira utilizar as regras definidas no hub.

4.7.7 Auth Provider

De forma a permitir que cada tenant tenha o seu proprio meio de autenticar os seus clientes,
foi criado o conceito de Auth Provider. Este consiste em um conjunto de configuracfes que
define como o processo de autenticacdo deve ocorrer. Assim que um cliente pedir para se
autenticar, a informac&o que o cliente envia € redirecionada por HTTP ou NATS para o destino
configurado, que por sua vez deve responder com estado de sucesso, identificador do utilizador,
meta dados do utilizador e permissGes. Nas configuracdes disponiveis é possivel definir o
método de redireccionamento estando disponiveis as op¢cdes HTTP e NATS, na mensagem de
redireccionamento é enviado o identificador do hub e da sessdo. Adicionalmente, é possivel
definir cabecalhos a serem enviados na mensagem. Portanto, cada hub pode somente utilizar
um Auth Provider. Por defeito um hub é criado com um Auth Provider que utiliza um caminho

que inclui o seu nome e utiliza NATS como meio de redireccionamento.

4.7.8 Session

A session ou sessdo é o elemento que gere a conexdo com o cliente, este processa as
mensagens recebidas pelo cliente, gere o heartbeat da conexéo e verifica as permissées do

utilizador antes de realizar a¢fes. Um utilizador pode ter vérias sessfes tendo estes um
51

MOD.IP. 108.R4.09.22

identificador proprio, as sessfes podem ser autenticadas e ndo autenticados, sendo possivel
autenticar posteriormente.

Este elemento foi desenvolvido de forma a ser agndstico ao tipo de comunicacéo utilizado,
permitindo que varios protocolos sejam implementados como WebSocket, SSE, gRPC e TCP.
Adicionalmente, de forma a garantir a estabilidade e o bom funcionamento da aplicacdo um
rate limit é aplicado individualmente a cada sessdo independente de quantas conexdes
simulténeas um utilizador tenha. O rate limit é aplicado a quantidade de mensagens recebidas
por segundo, sendo a quantidade configuravel, mensagens como heartbeat ndo séo tidas em
conta visto estas serem necessarias para garantir que a conexao se mantenha aberta. De forma
a reduzir a quantidade de heartbeats necessarios, sempre que um cliente envia uma mensagem,
independentemente de que tipo seja, esta conta como um heartbeat e por consequéncia adia o

envio da proxima verificagdo.

4.7.8.1 Tipo de conexao

Assim como mencionado anteriormente, a sessdo é agnostica ao protocolo de comunicagédo
utilizado e permite que varios protocolos sejam implementados. Atualmente, somente dois
foram implementados, sendo estes WebSocket e SSE. Em ambos os casos toda a informagao
transmitida esta em formato binario, no caso de WebSocket é possivel enviar e receber
mensagens do cliente, no caso do SSE é apenas suportado enviar mensagens para cliente, sendo
necessario que o cliente envie quais channels pretende subscrever quando estabelece a

conexao.

4.7.8.2 Protocolo

De forma ao cliente comunicar com aplicacéo, foi estabelecido um protocolo de mensagens
para que ambas as partes saibam que tipo de mensagens existem, quais acdes sdo possiveis e

permitir que ambas saibam o formato das mensagens com antecedéncia.

Inicio com JSON

Inicialmente o protocolo de mensagens foi definido utilizando o formato de serializagédo
JSON aproveitando as habilidades dindmicas do mesmo. No entanto, em certos casos 0 envio
de mensagens com contetdo em binario era necessario, e de forma a enviar este tipo de dados
em JSON este teria de ser convertido em base64. Infelizmente, converter dados binarios em

base64 além de ter um custo de desempenho envolvido, este também aumenta o tamanho do

52

MOD.IP. 108.R4.09.22

mesmo conteudo, sendo o aumento de cerca de mais 33% do tamanho original. O valor de
aumento pode ser calculado utilizando a seguinte férmula:
ceil((tamanho X 8) x 6) — (tamanho X 8)
Sendo o “tamanho” o numero de bytes, portanto, num exemplo de 1000 bytes o valor final

seria aproximadamente 13330 bytes.

Transicao para Protobuf

Portanto, mantendo as mensagens, o formato de serializacéo foi convertido para protobuf,
assim, passa a ser possivel o envio de dados em binario sem passos intermediarios. Outras
vantagens passam por melhor performance de serializagdo e com tamanhos finais mais
pequenos do que seria possivel em JSON, além de ser possivel utilizar as definicbes em
protocol buffers de forma a evitar problemas na evolucao das propriedades das mensagens e

também a validar o tipo dos dados durante a descodificagao.

Estrutura de envelope

No protocolo de mensagens, todos os tipos de mensagens ou eventos sdo enviados numa
estrutura comum nomeada de envelope, este envelope contém somente duas propriedades: tipo
de evento e contetido. O tipo de evento é representado por uma enumeragdo e o conteudo é
simplesmente um conjunto de bytes. Em certos casos é necessario relacionar uma mensagem
com outra, por exemplo, varios pedidos podem ser realizados onde se espera uma resposta de
cada um destes, e por muitas vezes as respostas podem nao ser recebidas da ordem em que 0s
pedidos foram realizados. De forma, a permitir o cliente associar uma resposta com o pedido
realizado, as mensagens incluem a possibilidade de enviar um ndmero inteiro como
identificador de pedido, que serd devolvido ao cliente com a resposta. Este identificador é
transparente para aplicacdo e em certos pedidos até sdo opcionais, nesses casos, quando o

cliente ndo preenche o identificador de pedido o servidor ndo envia uma resposta.

Tipos de eventos

Para cada tipo de mensagem esta definido um evento, no entanto, um evento pode
representar contetdos diferentes de acordo com quem envia e quem recebe, por exemplo,
guando uma mensagem com o tipo de evento Auth € enviada pelo cliente, € assumido que o
cliente estd a realizar um pedido de autenticacdo, enquanto quando uma mensagem com O
mesmo tipo de evento é enviada pela aplicagdo é assumido que esta é uma resposta ao pedido

anterior. Em primeiro lugar temos os tipos de evento base de uma conexao, estes sdo: Ping,
53

MOD.IP. 108.R4.09.22

Pong e Close. Os tipos de evento Ping e Pong sdo sempre usados em conjunto sendo
geralmente o Ping enviado pela aplicacdo quando é necessario um heartbeat ao qual este espera
um Pong de resposta pelo cliente. Caso este ndo o envie, a conexdo € considerada perdida e a
aplicacdo termina a conexdo e a sessao associada. Ja o tipo de evento Close € enviado somente
pelo cliente para notificar o servidor que vai terminar a conexao por vontade propria, este tipo
de evento permite que o servidor ndo tente guardar qualquer tipo de informacao sobre a sesséo.

Para tipos de eventos relacionados com a gestdo da sessdo temos Sessioninfo,
SessionRestore e SessionRestored. O SessionInfo é sempre a primeira mensagem enviada pela

aplicacdo, e contém o contexto da sessdo, sendo as suas propriedades:

e HublID - Identificador o hub a que a sesséo pertence;

e SessionlD - Identificador gerado para a sessdo em questao;

o HubAllowAnonymous - Se o hub permite conexdes andnimas, serve para informar o
cliente que tem um intervalo de tempo configuravel na aplicacdo, em que a sessdo pode-
se autenticar, caso ndo o faca esta é terminada pela aplicacéo;

e HubAllowUserChannel - Se o hub permite o channel de utilizador;

o DefaultPublic - Se os channels no hub sdo publicos por defeito;

o Authenticated - Se esta sessdo ja esta autenticada, visto ser possivel autenticar através

de parametros enviados enquanto a conexao esta a ser estabelecida.

Os outros dois tipos de eventos sao utilizados para a recuperacao de sessdo. A recuperacao de
sessdo é uma funcionalidade que permite que uma sessdo ja autenticada seja armazenada de
forma temporaria para que possa ser recuperada em casos de reconexdes rapidas, algo que
acontece regularmente com dispositivos méveis. A sessdo armazenada ou Session State, guarda
a autenticacdo, permissdes, identificadores e channels subscritos. Quando o cliente tenta
reconectar, este envia uma chave gerada que identifica a sessdo a ser restaurada, caso esta seja
encontrada, é restabelecido todo o estado anterior e tentando restabelecer a subscri¢cBes aos
channels, visto que configuracdes deste possam ter mudado de forma a tirar 0 acesso a sesséo.
Sempre que uma chave é utilizada, a informacao armazenada é apagada para evitar reutilizagao.
Para o funcionamento desta funcionalidade, é enviado o tipo de evento SessionRestore apos a
sessao ser autenticada, este contém somente a propriedade RestoreKey que é a chave gerada
pela aplicacdo para restaurar a sessao. Por fim, quando o utilizador se reconecta e a sesséo €

restaurada, é enviada a mensagem do tipo SessionRestored com as seguintes propriedades:

54

MOD.IP. 108.R4.09.22

e UserlD - O identificador de utilizador da sess&o;

e Authorizations - Lista de autoriza¢cdes dos channels;

o Extra - Metadata definida na autenticacao;

e SubscribedChannels - Lista de channels em que a subscricédo foi recuperada;
e RPCs - Lista de autorizacGes de RPCs.

4.7.8.3 Autenticacdo e autorizagéo

De forma a autenticar a sessdo, existe somente um tipo de mensagem: Auth. Este tipo tem
significados diferentes dependendo de quem a envia, do cliente para aplicacdo € interpretado
como um pedido de autenticacdo, de forma inversa, é interpretado como uma resposta ao
pedido de autenticacdo. As informacgfes a serem utilizadas para autenticar o utilizador sdo
indiferentes para aplicacdo sendo a responsabilidade do destinatario do Auth Provider de
interpretar e validar o conteddo, dessa forma, a mensagem de autenticacéo do cliente consiste
no envelope com tipo de evento Auth e contetudo é um conjunto de bytes. De forma a informar
a sessao do resultado, o0 mesmo tipo de evento é enviado, mas tendo como contetdo:

e Success - Se a autenticacao teve sucesso;

e UserlD - Identificar de utilizador;

e Token - Um token gerado pela aplicacdo de forma a utilizar outras APIs da aplicacéo;

o ChannelAuthorizations - Lista de autorizagdes para channels;

o RPCAuthorizations - Lista de autoriza¢des para RPCs;

e Extra - Um dicionario de valores adicionais.

As propriedades ChannelAuthorizations e RPCAuthorizations, assim como 0S seus nomes
indicam, sdo o meio disponivel para fornecer permissdes as sessdes, além das configuracdes
como Public e Allow Anonymous. Cada ChannelAuthorization, consiste em trés simples
propriedades, sendo o channel a ser permitido, se tem permissao de escrita (Publish) e se tem
permissao de leitura (Subscribe). Para a propriedade channel, é possivel utilizar wild-cards

com 0s seguintes caracteres:

e * - Este permite que qualquer valor antes ou depois deste, por exemplo, com

“product:*”, qualquer channel que comece com “product:” ¢ atingido pela permisséo.

55

MOD.IP. 108.R4.09.22

6,9

e # - Permite um valor arbitrario até ao proximo separador com “:”, por exemplo,
“product:#:stock” que atinge qualquer channel que tenha outro valor entre o “product:”

¢ “:stock” desde que ndo contenha um separador.

Para o RPCAuthorization, este tem somente a propriedade com o nome do método, e utiliza

0s mesmos wild-cards que o ChannelAuthorization.

4.7.8.4 Session State

O Session State € um snapshot do Gltimo estado de uma sessao, este contém o identificador
de sessdo e hub, channels subscritos e informacdes recebidas ap6s autenticacdo. Sempre que
uma alteracdo ocorre na sessdo, como por exemplo, uma nova subscri¢do, o estado atual da
sessao é copiado e armazenado no Redis, posteriormente, utilizando a chave de restauracédo
(RestoreKey) € realizada uma tentativa de restaurar todas subscri¢cdes ao channels anteriores
(SessionRestore), e toda a informagdo de autenticacdo é restaurada assim como 0 mesmo

identificador de sessao.

4.7.8.5 RPCs

Uma funcionalidade adicional, sdo os RPCs, quando um utilizador é autenticado, este recebe
uma lista de permissdes para RPCs. Estes séo representados por um valor de texto, e o seu
contetdo € indiferente para a aplicacdo, sendo somente exigido 0 seu envio como um conjunto
de bytes. Cada RPC realizado é redirecionado para o NATS que gere o0 envio para o destinatario

€ a sua resposta.

4.7.8.6 Streams

A funcionalidade de streams estd de momento incompleta e ird se manter desativada
inicialmente, até os casos da sua utilizacdo serem bem estabelecidos. O objetivo inicial desta
funcionalidade, passa por permitir que clientes submetam eventos para uma stream na
aplicacdo NATS ou outra como AWS Kinesis. Todos os eventos, sdo complementados com
informagdes da sessdo, como identificador de utilizador e sessdo. Esta funcionalidade sera
utilizada futuramente para coleta de eventos para andlise, assim como forma de os clientes
emitirem acOes que tenham realizado nas aplicagdes moveis e receber eventos que tenham sido

acionados pelas suas agoes.

56

MOD.IP. 108.R4.09.22

4,7.8.7 Document

Para o funcionamento de um channel do tipo Document, existem 4 tipos de mensagens:

o DocumentGet - Pedir cdpia do contetdo atual documento se for enviado pelo cliente e
resposta de for pelo lado da aplicagéo;

e DocumentChange - Realizar alteracdes ao documento se for enviado pelo cliente e
resposta as alteracdes se for enviado pela aplicacéo;

e DocumentUpdated - Enviado somente pela aplicacdo sempre que uma alteracdo ao
documento é realizada, contendo nova versao e alteracoes aplicadas;

e Documentinfo - Enviado somente pela aplicacdo com informacdo atual sobre o
documento como versdo documento. Este é sempre enviado quando um cliente

subscreve ao channel.

4.7.8.8 Default Channel

Num Default e Document channel, onde o PubSub é permitido existem somente dois tipos
de mensagens: Publish e Ack. Como os nomes indicam, o primeiro representa um pedido de
publicacéo realizado pelo cliente ou quando enviado pela aplicacédo, representa uma publicacao
que tenha ocorrido. Por fim, o Ack é enviado como confirmacdo se o Publish ocorreu com

sucesso, e é somente enviado caso solicitado.

4.7.8.9 Notification Channel

Por fim, os Notification channels utilizam os tipos de mensagens:

« NotificationNew - Sempre que uma nova notificacdo € criada;

« NotificationRead - Recebido pelo cliente quando uma notificacao € marcada como lida;

« NotificationInfo - Informacéo recebida pelo cliente com o numero de notificagdes ndo
lidas;

o MarkNotificationAsRead - Enviada pelo cliente, quando pretende marcar um conjunto

de notificagdes como lidas.

4.8 Métricas

De forma a compreender como a aplicacéo esta a funcionar, estdo a ser coletadas algumas
métricas a nivel global e individualmente por cada tenant, estas métricas comegaram por ser
somente numero de mensagens e bytes enviados e recebidos que sdo coletadas em forma de

contadores totais e os seus valores em intervalos de 5 em 5 minutos, sendo um valor

57

MOD.IP. 108.R4.09.22

configuravel. De forma a coletar erros e analisar a origem destes, é utilizado o servico AWS
Cloudwatch (apéndice C) e AWS X-Ray (apéndice D), este também é utilizado para acompanhar
informac6es como ndmero de instancias, utilizagdo de CPU e RAM. Adicionalmente, existem
mais métricas a serem coletadas a nivel global utilizando Prometheus, além das primeiras
mencionadas, temos nimero de subscricdes, sessdes ativas, tempo médio de processamento de
uma publicacdo num channel e tempo médio de processamento de alteragdes a um documento.
Estas métricas sdo fundamentais para avaliar a eficiéncia da aplicacéo, identificar possiveis
problemas e promover melhorias na aplicagcdo. No entanto, eventualmente surgiu o interesse
de analisar mais duas métricas adicionais, que resultou na coleta de cada sessdo iniciada e
quando esta terminava, desta forma, pode ser observado quantas sessfes foram iniciadas num

periodo de tempo e a duragdo de cada, estas métricas sdo coletadas por cada tenant.

4.8.1 Dashboard

Ao longo do desenvolvimento da aplicacdo, foi também desenvolvido um cliente em
typescript e um dashboard para testar o funcionamento da aplicacdo e ser capaz de analisar o
seu funcionamento. Dessa forma, o dashboard foi desenvolvido em typescript (apéndice E)
com a biblioteca de interface visual React. Esta ferramenta consiste em somente 4 paginas, e
sendo uma ferramenta interna esta contém mais uma pagina para a autenticacdo do seu

utilizador.

4.8.1.1 Contadores

A primeira parte consiste numa simples visualizacdo dos contadores armazenados
globalmente, assim como a possibilidade de ver as de um hub. Adicionalmente, mostra algumas
informacdes atuais sobre o cluster como nimero de membros, hubs, sessfes e channels ativos

no momento, assim como pode ver visto no apéndice F, figura 41.

4.8.1.2 Topografia de cluster

A segunda parte, permite inspecionar a topografia do cluster. Isto é realizado pedido a um
membro do cluster que pede a cada membro do cluster que realize uma introspecéo a todos 0s
hubs e seus respetivos channels e sessdes, esta informacéo é depois enviada para o dashboard
onde é transformado numa topografia. A visualizacdo da topografia € dividida em trés graficos,
no primeiro, representado no apéndice F, figura 42 e figura 43, € demonstrado todos os
membros do cluster e 0 seu nome neste, adicionalmente, quando existe uma linha entre eles

significa que existe uma conexdo gRPC com streaming ativa entre estes. A segunda
58

MOD.IP. 108.R4.09.22

visualizacdo da topografia é representada no apéndice F, figura 43 e figura 44, onde é
demonstrado a partir de uma origem como centro do grafico todos os hubs atualmente ativos e
ligado a estes os seus channels pertencentes. Por fim, a Gltima visualizagdo como representado
no apéndice F, figura 45 e figura 46, é demonstrado a hierarquia de membros para hubs, para
channels e sessdes. Estas visualiza¢es da topografia do cluster foram e sdo fundamentais para
perceber como o cluster distribui a carga recebida e como se comporta na presenca de falhas e

modificacGes ao nimero de membros no cluster.

4.8.1.3 Visualizacdo de métricas

A terceira parte consiste na visualizacdo das primeiras métricas previamente definidas em
todos cluster ou por tenant, em simples graficos de linhas. Portanto no apéndice F, figura 47,
figura 48 e figura 49 temos a evolugdo dos channels/sessdes/hubs ativos ao longo do tempo, e
nas figura 50 e figura 51 temos 0 nimero de mensagens ou bytes enviados em contraste com
0s recebidos. Por fim temos 2 graficos que foram posteriormente adicionados permitindo saber
quantas sessdes foram iniciadas por dia, e qual a sua duracéo por dia como pode ser visto no

apéndice F figura 52 e figura 53.

4.8.1.4 Ferramenta para inspecionamento

A (ltima parte consiste numa ferramenta que permite inspecionar o funcionamento da
aplicacdo. Esta utiliza o cliente desenvolvido, e fornece as funcionalidades deste numa
interface visual, como pode ser visto no apéndice F, figura 54. Esta parte, pode ser divida em
mais 3 partes. A primeira, consiste nas informacfes de sessdo, como estado de conexao,
identificador de utilizador, informacBes sobre hub, informaces extra de autenticacdo e
permissGes como demonstrado no apéndice F, figura 55. A segunda parte consiste em todo o
historico da conexdo, assim como visto no apéndice F, figura 56, esta regista quando a conexao
inicia e todos eventos que recebe, aqui eventos como PING/PONG (mecanismo equivalente ao
heartbeat) sdo ignorados pois sdo muito frequentes e pouco Uteis. Em cada registo na tabela é
possivel inspecionar o contetdo caso este esteja em formato de texto, caso contrario um
conjunto de bytes é apresentado. Por fim no apéndice F, figura 57, temos todos os channels a
que esta sessdo estad subscrita. Em cada aba, é demonstrado as funcionalidades de presenca e
occupancy, em channels com PubSub o historico de publica¢cBes é demonstrado, nos de
notificagdes de forma similar é demonstrado a lista de notificacGes e por fim como representado

na mesma figura, temos a representacao de um documento que se mantém sempre atualizado.

59

MOD.IP. 108.R4.09.22

4.8.2 Testes

Os testes sdo uma parte fundamental do processo de desenvolvimento de uma aplicacéo.
Estes ajudam a garantir que uma aplicacdo esté a funcionar conforme o esperado, identificando
problemas de desempenho, seguranca e usabilidade e permitindo reduzir o tempo e o custo do
processo de desenvolvimento. Neste projeto existem maioritariamente testes unitarios e teste

de integracéo.

4.8.2.1 Testes unitarios

Os testes unitarios sdo uma técnica essencial de programacao que consiste em testar partes
especificas e isoladas do codigo fonte de um programa, nomeadas de unit test. Grande parte do
cddigo foi desenvolvido de forma modular com o objetivo de facilitar o desenvolvimento de
unit tests, e muito do codigo foi desenvolvido ao mesmo tempo que 0s unit tests para estes de
forma similar a test-driven development. Embora néo exista uma cobertura de testes a 100%

do cadigo, todo o seu codigo principal e ldgica estdo cobertos num total de 60%.

4.8.2.2 Testes de integracdo

Os testes de integracdo sdo utilizados para garantir que diferentes partes da aplicagéo
funcionem corretamente juntas. Estes testes ajudam a identificar erros e falhas que podem
ocorrer quando diferentes componentes sdo combinados, enquanto testes unitarios focam-se

em pequenas partes de funcionamento.

4.8.2.3 Experimentagdo com clientes

De forma a experimentar a aplicagdo com trafego real, foi pensada uma forma gradual para
expor a aplicacdo a utilizadores finais sem impactar caso ocorra uma falha com este, a0 mesmo
tempo, vao sendo coletadas métricas de forma a procurar problemas que possam estar a ocorrer.
Sendo que o objetivo é testar a capacidade do sistema, foram utilizados servidores com baixas
especificacdes, com somente 0.25 vCPU e 0.5 GB de RAM.

Portanto, a exposicao esta a ocorrer em 4 simples fases, na primeira consiste em fazer com
que as aplicagOes se conectem ao sistema, sem utilizar nenhuma funcionalidade deste, somente
manter uma sessdo autenticada ativa de forma a estimar quantas conexdes podemos esperar por
agora, nesta primeira fase somente 2 clientes foram escolhidos como alvos.

Para a segunda fase, todos os clientes irdo manter uma conexao ativa com o0 mesmo objetivo

da anterior, e manter um channel ativo por sessao.

60

MOD.IP. 108.R4.09.22

Na terceira fase, sera utilizada de forma a experimentar uma possivel primeira
funcionalidade, em que cada sessdo ira se subscrever ao item que estejam a ver utilizando a
capacidade de occupancy. Por fim, na Gltima fase serd aumentada a quantidade de dados
enviados pelas sess6es, essa informacdo podera ser de novas funcionalidades ou somente dados

para teste.

4.8.2.4 Resultados

Antes de expor o sistema as aplicacfes moveis, foi feito um teste de quantas conexdes um
cluster com 3 membros seria capaz de suportar, utilizando as especificagdes previamente
mencionadas, e 0 comportamento do cluster ao adicionar ou remover membros. Neste teste,
cada membro do cluster foi capaz de suportar aproximadamente 15 mil conexdes num total de
aproximadamente 45 mil conexdes, ndo sendo capaz de ter mais conexdes devido ao limite de
RAM nos servidores. Utilizando servidores com maior capacidade o cluster é capaz de
aumentar a quantidade de conexdes com 0 mesmo nimero de membros, no entanto, o objetivo
é ver a capacidade de distribuicdo e tolerancia a falhas. Estes valores sdo muito superiores aos
que eram esperados no sistema anterior, além de ser capaz de suportar falha dos membros sem
indisponibilizar o servigo.

O ajuste do cluster ao adicionar ou remover membros era relativamente rapido, demorando
aproximadamente 300ms, visto que este notifica os outros membros de que esta ativo ou que
vai deixar de estar. Nos casos de falha, por impossibilidade de um membro notificar os outros
de que vai deixar de estar ativo, o cluster demorou aproximadamente 700ms. O motivo desta
duracdo deve-se principalmente a detecdo do estado de atividade do membro. Naturalmente,
em clusters com maior numero de membros estes ajustes vdo demorar mais, mas € um
comportamento ja documentado e ndo é problematico. E possivel fazer alguns ajustes nas
configuracBes da implementacdo de gossip, no entanto, ndo ha necessidade para alterar as
atuais.

Quanto as fases de teste com trafego real, ndo foi possivel obter todos os resultados antes
da producéo deste documento. Visto que o projeto ainda se encontra na segunda fase de testes,
as analises de resultados séo bastante limitadas.

Nas primeiras duas fases de testes com trafego real, foi observado que o nimero de sessbes
em simultaneo era consideravelmente inferior ao esperado, no entanto, é possivel verificar que

0 numero de sessdes é distribuido ao longo do dia, com picos relativamente pequenos.

61

MOD.IP. 108.R4.09.22

Portanto, de forma a melhor avaliar as sessdes ao longo do tempo, foi implementado a coleta
de sessOes e suas duracbes. Com estas métricas adicionais, assim como previsto, podemos
concluir que grande parte das sess@es sdo de curta duragdo, sendo a média de aproximadamente
de 2 minutos. No apéndice F, figura 29, podemos observar a distribuicdo de sessfes ao longo
do dia, esta visualizacdo acumula as sessfes dos tenants em fase de teste. Assim como pode
ser observado, a Unica altura do dia onde o nimero de sessdes € mais elevado é entre as 21 e
22 e 9 e 11 horas, nas outras alturas do dia o numero de sessdes é relativamente baixo. Ao
mesmo tempo, a duracdo de sessbes € maior entre as 5 e 6 horas, assim como pode ser
observado no apéndice F, figura 30

Tirar conclusdes desta informacdo é somente relevante quando é analisado tendo em
conta o tenant, os seus produtos e campanhas, no entanto, com esta informacdo podemos
analisar a carga de pedidos na aplicacéo, quando esta é mais esperada e utilizar esta informacéo
de forma a preparar o cluster para a carga esperada, embora este processo ndo sera tido em

conta por agora.

4.8.3 Clientes

De formaa integrar a aplicagdo com dispositivos moveis e aplicacdes Web, a implementacao
de clientes teve de ser criada. Por agora, as unicas plataformas alvo sdo Android, 10S e Web,
sendo as linguagens respetivas para cada plataforma, Kotlin, Swift e javascript. Visto protocolo
utilizar protocol buffers, utilizando as suas ferramentas foi possivel gerar todo as mensagens
assim como a sua forma de serializacdo para cada plataforma, sendo somente necessario
implementar a gestdo da conexdo e sessdo e a informacéo recebida para cada tipo de channel
sendo somente o channel do tipo document o mais complexo. Para as plataformas moveis foi
utilizado o Kotlin Multiplatform Mobile (KMM) que permite criar somente uma Unica
implementacdo para as plataformas Android e IOS. Por fim, o cliente para Web em javascript
foi desenvolvido em conjunto com o dashboard, e € utilizado na ferramenta de
inspecionamento. Existem alguns pontos importantes a serem mencionados no lado das

implementagdes dos clientes, sendo o protocolo e gestio de sesséo.

4.8.4 Protocolo

Assim como previamente mencionado, as mensagens foram definidas com protocol buffers,
além de permitir gerar codigo para varias linguagens de programacéo, este permite também
implementar novas funcionalidades no protocolo mantendo compatibilidade com versdes

anteriores, sendo necessario que o cliente saiba que versdo do protocolo este utiliza. Em geral
62

MOD.IP. 108.R4.09.22

novas versdes somente irdo adicionar novas propriedades ou tipos de mensagens de forma a

tentar manter o maximo de compatibilidade entre protocolos.

485 Gestdo de Sessdo

Sendo alguns dos alvos as plataformas moveis, é necessario que a gestdo de conexdo seja
capaz de lidar com desconexdes abruptas e ser capaz de restabelecer a conexdo de forma a
manter a sessdo. Portanto, de forma a restabelecer a sesséo anterior existem os mecanismos de
SessionRestore e SessionRestored com este exato objetivo. No entanto, mensagens que tenham
sido enviadas durante o periodo de desconexdo sdo perdidas pelo cliente. De forma a tentar
recuperar essas mensagens, existe a funcionalidades previamente mencionada de live history,
onde o cliente pode requisitar mensagens enviadas ap0s uma timestamp. De lembrar, que
embora estas funcionalidades existam, estas funcionam na forma de best effort ndo dando fortes
garantias, portanto, nestes casos o cliente deve ser capaz de ser o préprio a autenticar a sessao
de subscrever de volta aos channels e enviar a ultima timestamp recebida de cada, para que
estes tentem enviar as mensagens perdidas. A implementacdo também gere mensagens a serem
enviadas, pondo-as numa fila de envio, de forma que mensagens a serem enviadas pelo cliente
ndo sejam perdidas. Por fim, caso um servidor falhe, todas conexdes a este tém que ser
restabelecidas, caso todas sejam feitas relativamente ao mesmo tempo, podera ocorrer um
thundering herd, ou seja, um aumento repentino de novas conexdes que podem causar que
outros servidores falharem repetindo o mesmo problema e com mais conexdes. De forma evitar
um thundering herd um backoff exponencial é implementado para realizar a reconex&o,
comecgando com uma tentativa instantanea seguida de um intervalo de tempo a multiplicar pelo

ndmero de tentativas.

4.8.6 Escalabilidade futura

Sendo um dos pontos fundamentais deste projeto, a sua capacidade de escalar
horizontalmente, foram pré-definidas formas de aumentar a escalabilidade do sistema, caso
eventualmente seja necessario. Em primeiro lugar temos de identificar os pontos em que o

desempenho do sistema em geral pode ser impactado.

4.8.6.1 Problemas

Como primeiro ponto identificado, temos o nimero de conexdes de clientes a uma
aplicagcdo. Cada conexdo exige a gestdo de PING/PONG, o envio de mensagens e o

processamento de mensagens recebidas pelo cliente. Esta gestdo pelo que foi observado
63

MOD.IP. 108.R4.09.22

localmente, € a primeira parte a afetar o desempenho. Por exemplo, uma mensagem de channel
a ser enviada para 50 sessOes exige que esta seja copiada 50 vezes para sockets no sistema
operativo, que apresenta um custo a nivel de processamento e de meméria, incluindo que cada
servidor tem um méximo de conexdes que pode manter abertas a0 mesmo tempo.

Como segundo ponto, temos 0 nimero de conexdes ativas entre varios membros do cluster,
imaginando um cluster de 20 membros, é possivel que um membro tenha de manter uma
conexao ativa a varios outros devido a distribuicdo dos channels entre todo o cluster.

Por fim, devido ao processamento de mensagens em todos os tipos de channels atuais ser
realizado serialmente, um channel com muito trdfego podera ndo conseguir acompanhar a
quantidade de mensagens. Neste ultimo ponto, pelo menos por agora, ndo existe uma solucao
definida embora seja possivel simplesmente retirar o processamento serial de cada mensagem

e distribuir entre varios threads, o que exige que a ordem das mensagens ndo seja mantida.

4.8.6.2 Possiveis solucdes

A solucdo ja pré-definida consiste em atribuir diferentes cargos aos membros do cluster,
idealmente de forma dindmica. Estes cargos seriam Edge e Core, neste momento estes cargos
ja estdo definidos, no entanto, de forma estética nas configuracdes iniciais da aplicagdo. Um
membro com o cargo de Core ird funcionar normalmente como se ndo houvesse cargos,
enquanto um membro Edge, ndo serd contabilizado como um membro de distribuicdo de
channels, ou seja, vai somente receber conexdes de clientes e se conectar aos membros Core
quando precisa de se subscrever.

Desta forma, os membros com o cargo Core irdo se focar principalmente com o
processamento de mensagens, enquanto 0s outros gerem somente conexdes, esta solucdo
permite resolver tanto o primeiro como o segundo ponto. Para o primeiro ponto, podemos ter
mais membros com cargo Edge sendo que ndo afetam a redistribui¢do do cluster, e para o
segundo ponto, podendo os membros com cargo Core que serdo menos, o nimero de conexdes

entre os membros do cluster pode ser reduzido significativamente.

4.9 Diagramas

De forma a demonstrar um segmento da aplicacdo, temos a figura 16, nesta temos a
exemplificagdo dos passos ocorridos quando um cliente se subscreve a um channel que
pertence ao Node em que este estd conectado e quando o mesmo cliente se subscreve a um
channel a que pertence a outro Node. Para o processo inverso de remover subscri¢do a processo

€ 0 mesmo, sendo a Unica diferenca o conteudo enviado nas mensagens, e a publicacdo feita
64

MOD.IP. 108.R4.09.22

pelo Cliente 2 ndo seria enviada do Node 2 para 0 Node 1. As mensagens enviadas entres 0s
clientes e Nodes podem ser observadas no apéndice G onde estdo as mensagens do protocolo

relevantes para este exemplo.

Figura 16 - Flow de subscricdo do cluster

Channel 1 Channel 2

A : : A

Responsavel por
Responsavel por

Cliente 1 Mode 1 Mode 2 Cliente 2

Subscrever a channel 1

Confirma subscrigdo

Subscrever a channel 2

Subscrever a channel 2

Confirma subscricao

Confirma subscrigdo

a3

Publicar no channel 2

Envia publicagao

Envia publicacao Confirmagdo publicagio

Fonte: Propria

De a ter uma visualizacao do sistema temos o seguinte diagrama de classes na figura 17 que
se encontra incompleta e ilegivel por motivos de privacidade empresarial. Este diagrama
mostra apenas as classes que representam o funcionamento principal do sistema, as
configuracgOes da aplicagdo, armazenamento e definicdo de APIs ou néo estdo representadas

apresentam uma classe vazia.

65

MOD.IP. 108.R4.09.22

Figura 17 - Diagrama de classes

Fonte: Proépria

De forma a tornar este diagrama legivel, iremos focar nas classes e interfaces principais, o

Engine, o ClusterNodeManager , o ChannelProcessor, o Hub, a Session e o ChannelListener.

4.9.1 Engine

O Engine é o elemento que agrega todos os componentes do sistema, este apresenta dois
métodos Start e Stop que iniciam e terminam a aplicacdo. Esta classe é a que recebe transforma
pedidos recebidos por outros Nodes em ac¢des, assim como € a classe utilizada quando pedidos
na API de administracédo sdo realizados. Portanto, esta classe faz a agregacéo de todos os hubs
e sessdes, assim como é o elemento que serve como ponte entre o ClusterNodeManager e o

hub local. Sempre que alteracbes sdo realizadas no cluster, esta classe € notificada e é

66

MOD.IP. 108.R4.09.22

responsavel por realizar o seu processo de redistribuicdo dos channels. A representacdo desta

classe pode ser observada na figura 18.

Figura 18 - Diagrama do Engine

Engine

+ ID: string

- sessions: map(string]Session

- hubs: [JHub

- channelService: ChannelService

- hubService: HubService

- authProviderService: AuthProviderService
- userService: UserService

- streamService: StreamService

- documentService: DocumentService

- notificationService: NotificationService
- nodeManager: ClusterNodeManager

- natsManager: NatsManager

- cacheManager: CacheManager

- balanceSubscriptionsOnNodeRemoved(nodelD: string)

- balanceSubscriptions(nodes: [Jstring)

+ NodelD() string

+ GetChannelPresence(hublD: string, channellD: string) (string, protocol.ChannelPresencelnfo, error)
+ BroadcastHubSettingsUpdated(hublD: string)

+ BroadcastNamespaceUpdated(hubID: string, namespace: string)

+ BroadcastChannelRulesUpdated(hublID: string, channelRulesID: string)

+ UpdateChannelSettings(hublD: string, channellD: string, channelRules: ChannelRules)

+ RemoveRemoteListener(hublD: string, channellD: string, nodelD: string, listenerlD: string) error

+ SendChannelPayload(hublD: string, channellD: string, payload: [Jbyte) int64

+ AddRemoteListener(node: PeerNode, hublD: string, channellD: string, listener: ChannelListener) error
+ RegisterSession(session: Session)

+ RemoveSession(sessionlD: string)

+ GetOrCreateHub(hublD: string) (*Hub, error)

+ RemoveHub(hub: Hub)

+ Stop()

+ Start()

+ AddSubscription(hub: Hub, channellD: string, node: ClusterMember, session: Session)

+ RemoveSubscription(hub: Hub, channellD: string, session: Session)

+ GetNodeManager(): ClusterNodeManager

Fonte: Prépria

4.9.2 ClusterNodeManager

O ClusterNodeManager é uma interface que representa as funcionalidades que séo
necessarias que 0s componentes que gerem o cluster sejam capazes de cumprir. Esta definido
como uma interface de forma permitir que sejam criadas implementacdes diferentes utilizados

variagOes diferentes do protocolo gossip.

67

MOD.IP. 108.R4.09.22

Para entender o funcionamento a nivel interno temos a figura 24 e figura 25, ambos fazem
parte do mesmo diagrama, mas estdo separadas de forma a facilitar a leitura. Na primeira figura,
pode ser observado o que ocorre quando uma sesséo se subscreve a um channel que pertence
ao Node em que esta se encontrada conectada, neste caso, o hub e channel sdo criados e
inicializados de forma dindmica e a sesséo é adicionada como um subscritor ao channel. Na
segunda figura, pode ser observado o processo para a subscricdo a um channel a que o Node
responsavel por este ndo 0 mesmo que a que sessdo se encontra conectada, neste caso, uma
conexdo e uma stream gRPC sdo criadas caso ndo existam, assim que o Node responsavel
receba a mensagem, este vai notificar o seu Engine do pedido de subscricdo recebida. Este por
sua vez ira criar e inicializar o hub e channel caso ja ndo estejam e ira adicionar a sessdo como

um ChannelListener. A representacdo da interface pode ser observada na figura 19.

Figura 19 - Interface ClusterNodeManager

<<interface>>
ClusterNodeManager

+ NodelD() string

+ GetActiveConnections() [Jstring

+ DisconnectCluster() error

+ GetNodes() [[NodeMemberinfo

+ GetNodeForChannel(hublD: string, channel: string) ClusterMember
+ BroadcastPayload(eventName string, payload [Jbyte)

+ GetMembers() map[string]ClusterMember

+ JoinCluster(addresses: [Jstring)

Fonte: Propria

4.9.3 ChannelProcessor

O ChannelProcessor é a interface que define os comportamentos do channel, todos os tipos
de channels como document, notification e default implementam esta interface, esta recebe os
pedidos de publicacdo de eventos e € responsavel pelo envio por para as sessdes subscritas, que
sdo representadas pela classe ChannelListener. A representacdo da interface ChannelProcessor

pode ser observada na figura 20.

68

MOD.IP. 108.R4.09.22

Figura 20 - Interface do ChannelProcessor

<<Interface>>
ChannelProcessor

+ ID(): string

+ Terminate()

+ AddListener(node: PeerNode, listener: ChannelListener)
+ Removelistener(nodelD: string, listenerlD: string)

+ GetListenersManager() ListenersManager

+ GetUpdateManager() ChannelRulesUpdateManager

+ IsChannelType(type: ChannelType): bool

+ ProcessMessage(payload: [|byte): bool

Fonte: Prépria

49.4 Hub

O Hub é a classe que representa um tenant no sistema, por esse motivo, este agrega todos
o0s channels e sessfes pertencentes ao tenant. Sempre que € necessario inicializar ou terminar
um channel essa operacao € realizada pelo hub, ou seja, o hub é a classe que permite realizar

operacdes a nivel de um tenant. A representacdo da classe pode ser observada na figura 21.

Figura 21 - Diagrama do Hub

Hub

- settings: HubSettings
- sessions: [JSession

- channelProcessors: map[string]ChannelProcessor

+ AddSession(session: Session)

+ RemoveSession(id: [Jbyte)

+ RemoveChannelProcessor(channel: string)

+ GetChannelProcessor(channel: string) (*ChannelProcessor, error)

+ PublishToChannei(msgID: [Jbyte, publishRequest: PublishRequest) error

+ Close()

Fonte: Propria

495 Session

A Session ou sessdo, é a classe que representa um cliente conectado. Atravéz da sessao 0s
utilizadores podem publicar eventos e subscrever a channels. Assim como previamente
mencionado, a sessdo pertence sempre a um hub e pode subscrever a um channel com a sua

representacdo de ChannelListener. A representacédo da classe da sessao pode ser observada na
figura 22.

69

Figura 22 - Diagrama da Session

Session

- connection: Connection
- id: string

- account: *Account

- hub: Hub

- engine: Engine

- subscribedChannels: [Jstring

- attemptSaveState()

- handleSubscribeMessage(payload: [Jbyte)

+ GetID(): [Jbyte

+ GetAccount(): *Account

+ SendSessioninfo()

+ Close()

+ UnsubscribeFromChannel(channel: string): (bool, error)
+ SubscribeToChannel(channel: string) (bool, error)
+ IsAuthenticated(): bool

+ SendPayload(payload: [Jbyte): bool

+ CanSubscribe(channel: string): bool

+ AddSubscribedChannel(channel: string)

4.9.6 ChannelListener

Fonte: Propria

MOD.IP. 108.R4.09.22

O ChannelListener é a interface que representa uma subscricdo num channel. Sempre que

uma sessdo é adicionada como subscritor a um channel esta é adicionada uma classe que

implementa esta interface. Adicionalmente, sessdes remotas também sdo representadas por esta

interface. O diagrama da interface pode ser observado na figura 23.

Figura 23 - Interface do ChannelListener

+ ID(): string

<<interface>>
ChannelListener

+ SendChannelPayload(hublD string, channellD: string, payload: [Jbyte): bool
+ SendSessionPayload(hublD string, payload: [Jbyte): bool
+ NodelD(): string

+ GetUserlD() *string

+ GetUserExtra() maplstring]string

Fonte: Prépria

4.9.7 Fluxograma de subscricédo

Agora que foram revistas as classes e interfaces principais, podemos ver um fluxograma dos

passos para a subscri¢do de um channel assim como foi representado previamente de forma

mais simples. Na figura 24 e figura 25 temos um fluxograma que foi divido em duas partes, a

70

MOD.IP. 108.R4.09.22

primeira representa o processo de subscricdo a um channel quando o Node é responsavel, ou
subscricdo a um channel local, na segunda parte é representado o processo quando o channel
pertence a outro membro do cluster.

Figura 24 - Subscri¢do a um channel local

Subscrever a channel 1

Verlflcar Enviar notificagdo que
permissao pedido falhou

Calcular Node para o
channel

!

Criar hub e channel se
nao existir

Inicializar hub e channel
caso nfo existam

Adicionar sessao como
Channellistener

Fonte: Propria

71

Figura 25 - Subscri¢do a um channel remoto

Subscrever a channel 1

Calcular Node para o
channel

Estabelecer gRPC
stroam caso ndo esteja

l

Enviar pedido de
subscrigio pela stream

l

Processar pedido e
notificar Engine

l

Criar hub e channal se
nlo axist

l

Indcializar hub & channel
caso ndo existam

l

Adiclonar sesséo como
Channellistener

l

Enviar resposta para o
Node

l

Envias resposta para a
sessdo

Fonte: Prépria

MOD.IP. 108.R4.09.22

72

MOD.IP. 108.R4.09.22

Este processo de subscrigédo é representado pelo segmento codigo presente na aplicacdo que
estd representado na figura 26. Neste segmento de cddigo ja € assumido que a sessdo tem
permissdo para subscrever ao channel. Assim que esta funcdo € invocada, esta calcula o Node
responsavel pelo channel, caso seja local este é criado caso ndo esteja e a sessao € adicionada
como ChannelListener. Se o channel pertencer a um Node remoto, este faz um pedido de

subscricao ao Node.

Figura 26 - Funcao de subscrever a um channel

Fonte: Prépria

73

MOD.IP. 108.R4.09.22

5 DISCUSSAO DE RESULTADOS

Assim como previamente mencionado, antes de expor 0 novo sistema as aplicacfes moveis,
foi feito um teste de quantas conexdes um cluster com 3 membros seria capaz de suportar, em
servidores com somente 0.25 vCPU e 0.5 GB de RAM. Neste teste, cada membro do cluster foi
capaz de suportar aproximadamente 15 mil conexdes num total de aproximadamente 45 mil
conexdes, nao sendo capaz de ter mais conexdes devido ao limite de RAM nos servidores.
Utilizando servidores com maior capacidade o cluster é capaz de aumentar a quantidade de
conexdes com 0 mesmo nimero de membros, no entanto, o objetivo era ver a capacidade de
distribuicdo e tolerancia a falhas. Estes valores obtidos sdo muito superiores aos 9000
atualmente esperados, além de ser capaz de suportar falha dos membros sem indisponibilizar
0 Servico.

Ap0s o teste de conexdes foi realizado outro teste com o objetivo de avaliar o tempo que
um cluster demora a ajustar os channels pelos membros. Neste teste existem 3 membros no
cluster e um quarto é adicionado normalmente e removido repentinamente de forma a simular
uma falha. Apds cada ajuste é coletado a partir dos logs de cada membro o tempo que o ajuste
demorou em milissegundos, para clarificar, so é apontado a duragdo do ajuste e ndo de detecdo
que o membro foi adicionado ou removido.

Para este teste, foram escolhidas 4 varia¢cbes com 5 rondas cada, nestas variam o numero de
channels e o nimero de clientes, no entanto estes nao ultrapassam dos 3. As 4 variacdes sdo as
seguintes:

o 12 Variagdo:

o 1 cliente conectado ao Node 1;

o 500 channels;

o ldentificador de channels em UUIDs (Universal Unique IDentifiers).
o 2% Variagdo:

o 3 clientes, um conectado a cada Node.

o 1500 channels;

o ldentificador de channels em conjunto de 20 caracteres aleatorios.
o 3*Variagao:

o 3clientes, um conectado a cada Node.

o 4500 channels;

o ldentificador de channels em conjunto de 40 caracteres aleatérios.

o 42 Variagao:

74

MOD.IP. 108.R4.09.22

o 50 clientes distribuidos pelos Nodes.
o 100000 channels;
o ldentificador de channels em conjunto de 40 caracteres aleatorios.

A diferenca nos identificadores do channels deve-se ao posicionamento no hash ring. Na
primeira variacdo grande parte dos identificadores channels eram semelhantes, o que levava
que estes tivessem o mesmo Node como responsdvel. Com os identificadores gerados
aleatoriamente houve uma melhor distribuicdo pelos Nodes, assim como pode ser observado

nos resultados representados na figura 27 e figura 28.

Figura 27 - Tempo médio de redistribui¢do no cluster em milissegundos (Adicionar)

Tempo médio de redistribui¢do no cluster em
milissegundos (Adicionar)

16000
14000

12000

10000

8000

6000

4000

=, M h
o 1l

12 Variacdo 2% Variagdo 32 Variagdo 42 Variagdo

ENode1l ®mNode2 mNode3

Fonte: Prépria

75

MOD.IP. 108.R4.09.22

Figura 28 - Tempo médio de redistribuicdo no cluster em milissegundos (Remover)

Tempo médio de redistribui¢do no cluster em
milissegundos (Remover)
140000
120000
100000
80000
60000
40000
20000

0 - N |

12 Variacéo 2% Variacao 3% Variacao 42 VVariacao

mNode 1l mNode2 mNode3

Fonte: Prépria

A diferenca entre de desempenho entre o adicionar ou remover um membro do cluster deve-
se ao processo de remover um membro do cluster ser mais eficiente. Neste processo sabemos
o identificador do Node que saiu 0 que permite que seja calculado de forma eficiente quais
channels devem ser movidos, adicionalmente, numa redistribuicdo ao adicionar um membro é
necessario notificar o membro do cluster previamente responsavel de que ndo tem mais
interesse nos channels a que estes pertenciam, este passo ndo acontece quando um membro é
removido. O tempo de ajuste destas varia¢6es vai subindo de acordo com o nimero de channels
ativos no cluster, sendo que quando observamos o salto da segunda para a terceira variacdo do
teste o tempo de ajuste sobe consideravelmente, inclusive ndo foi possivel realizar a quarta
variacdo do teste devido ao tempo que o cluster fica em ajustes. Apds analisar os 0 que leva a
este consideravel aumento, foi identificado que o atraso se deve a forma como a movimentacao
dos channels e das conexdes gRPC para 0s novos responsaveis é realizada. Este processo é
feito de forma individual, ou seja, um channel de cada vez. Este processo foi melhorado
drasticamente, agrupando todos as alteracdes a serem realizadas por membro num conjunto e
enviar somente uma mensagem por cada conjunto de operacdes, adicionalmente, este processo
foi também paralelizado. Esta alteracdo resultou nos resultados apresentados da quarta
variacao.

Quanto ao tempo que leva a adicionar ou remover um Node ao cluster é de aproximadamente
16ms, para a dete¢do de falha do tempo é entre 120 a 500ms. De forma a obter os 16ms, foi

registado o tempo em que o Node descobre os enderecos dos outros membros e o tempo em

76

MOD.IP. 108.R4.09.22

que este se juntou a pelo menos um dos membros do cluster. Para o tempo de detecdo de falha
foi comparado o tempo em que o Node foi terminado com o tempo que um dos Nodes detetou
a falha, os intervalos entres estes dois tempos foram muito variados sendo os valores mais
comuns entre 120 a 500ms.

Quanto as fases de teste com trafego real, ndo foi possivel obter todos os resultados antes
da producéo deste documento. Visto que o projeto ainda se encontra na segunda fase de testes,
as andlises de resultados s&o bastante limitadas.

Nas primeiras duas fases de testes com trafego real, foi observado que o nimero de sessbes
em simultaneo era consideravelmente inferior ao esperado, no entanto, é possivel verificar que
0 numero de sessdes é distribuido ao longo do dia, com picos relativamente pequenos.

Na figura 29, podemos observar a distribuicdo de sessdes ao longo do dia, esta visualizagao
acumula as sessdes dos tenants em fase de teste.

Figura 29 - Distribuicéo de sessGes por hora

Sessdes por hora
12000

10000
8000
6000
4000
2000
063x§9q§9%§bv§9@§bbépﬁépQﬁpof9§§9§f§2f§2§§iyéi@6igﬁagd?@f?gf§§fsifS{ngfp

e SessOes por hora
Fonte: Propria

Na figura 30, temos a representacdo da dura¢do média de sessdo a cada hora do dia. Assim
como pode ser observado as duragdes das sessdes sdo relativamente baixas, sendo assim com

0 apresentado as 16 horas na mesma figura.

77

MOD.IP. 108.R4.09.22

Figura 30 — Média de duragdo de sessdo por hora

Média de duracéo de sess@o por hora em segundos

450
400
350
300
250
200
150
100

50

O O O O O O O O O O O O O O O O O OO O O O O O »
S O O 0 90,0 0,000 0. .0.90.0.90,0.0,0,.0 .90 .90.90.90.9
ST AT AT AT T 6T 6T AT @7 0787 5T 0P 07 pT 67 8 T T a2 T Y A

e \|édia de duracéo de sessdo por hora em segundos
Fonte: Prépria

Até ao momento de que este documento foi desenvolvido, ja foram em enviadas 12 706 780
mensagens e recebidas 12 706 690 mensagens, com um total de 173 977 sessOes estabelecidas
com 2802 sessdes diarias em média, e com soma de duracgéo destas de 23 757 458 segundos ou
aproximadamente 6600 horas e dura¢do média de 2 minutos.

Devido a falta de métricas coletadas pelo sistema anterior ndo € possivel fazer uma

comparacéo entre os resultados novo sistema com os resultados do sistema anterior.

78

MOD.IP. 108.R4.09.22

6 CONCLUSAO

Em conclusdo, o novo sistema distribuido apresenta uma solucdo satisfatoria para os
problemas encontrados no sistema antigo, com melhorias significativas na escalabilidade, na
toleréncia a falhas e na monitorizagcdo. Adicionalmente, todas as funcionalidades do antigo
sistema foram mantidas enquanto novas foram adicionadas, permitindo também adicionar
futuras funcionalidades gracas a sua arquitetura. Embora algumas funcionalidades, como
Streams e push notifications, ainda ndo estejam completas, foram identificadas oportunidades
para melhorias futuras.

O novo sistema atingiu todos os objetivos estabelecidos, incluindo escalabilidade horizontal,
comunicacdo bidirecional entre cliente e servidor, comunicacéo utilizando Pub/Sub em topicos,
restricdo de acesso a topicos, suporte para multiplos tenants, criacdo explicita de topicos,
rastreamento de presenca de clientes em cada topico e armazenamento de mensagens enviadas
em cada tépico.

Os préximos passos para o sistema sdo planear o escalamento global e o routing inteligente,
tendo em conta a laténcia entre o servidor e o cliente, garantindo que o sistema possa lidar com

um numero maior de utilizadores e volume maior de dados.

79

PARTE Il - ARTIGO CIENTIFICO

MOD.IP. 108.R4.09.22

AppSockets
Tiago Marques Soares Lima
Estudante do 3%ano da Licenciatura em Engenharia Informatica
do ISTEC Porto

Resumo: Este artigo descreve uma
aplicacdo para um sistema de comunicacédo
em soft real-time, com o objetivo de
substituir um sistema anteriormente
utilizado. Através do protocolo gossip, hash
ring e gRPC, foi criada uma aplicacédo
distribuida que é capaz de escalar
horizontalmente, permitindo a substitui¢éo
do sistema anterior utilizado na empresa
NAPPS, enquanto matem todas as suas
funcionalidades.

Palavras-chave: Soft Real-Time,
Publicar/Subscrever, WebSockets, Message
Broker

Abstract: This article describes an
application for soft real-time
communication system, with the purpose of
replacing a previously used system. Using
the protocol gossip, hash ring, and gRPC
technologies, a horizontally scalable
distributed application was created, which
is capable of replacing the previous system
at NAPPS while maintaining all of its
functionalities.

Keywords: Soft Real-Time, Publish/Subscribe,
WebSockets, Message Broker.

. Introducgéo

Neste artigo é explicado a criacdo
de infraestrutura para o0 envio de
informacdo em soft real-time entre clientes
e servidores, e a0 mesmo tempo substituir
um sistema com objetivos similares,
mantendo 0 maximo de compatibilidade
possivel de forma a facilitar a migragdo
para 0 novo sistema.

A. Motivacéo

A aplicagdo desenvolvida consiste num
sistema Publish/Subscribe com suporte
para multiplos tenants, onde existem
elementos que subscrevem a um tdpico
(Subscribe) e recebem todas mensagens ou
eventos publicados neste mesmo tdpico
(Publish).

O sistema criado tem como propdsito
substituir o sistema anterior enquanto
mantém todas as suas funcionalidades,
adiciona novas funcionalidades e facilita a
sua utilizacao.

As motivagbes para 0 desenvolvimento
deste novo sistema foram baseadas em
alguns pontos principais, sendo estes:

e O sistema a ser substituido ndo ser
horizontalmente escalavel;

e A ndo existéncia de ferramentas de
monitorizacao e detecédo de erros;

e Arquitetura ndo preparada para
novas funcionalidades;

e Falta de testes no projeto.

O sistema a ser substituido, foi
desenvolvido de forma rapida, e durante o
seu desenvolvimento ndo existia a
necessidade de que este fosse
horizontalmente escalavel, e a adaptacédo
seria complicada exigindo modificar
grande parte do seu funcionamento.
Inicialmente, este sistema foi projetado
para ser utilizado maioritariamente por
dashboards e backoffices como
subscritores enquanto alguns eventos eram
emitidos por outros servidores. No entanto,
novas funcionalidades a serem planeadas

80

necessitam que a utilizagdo deste sistema
seja ampliada para a aplicacbes moveis,
onde existe um valor muito mais elevado de
conexdes a serem realizadas, de forma a
quantificar a diferenca de conexdes
esperadas, no sistema a ser substituido era
somente esperado ter no méaximo 50
conexdes diarias, um valor muito baixo,
enquanto o valor esperado para 0S
utilizadores atuais ¢ de aproximadamente
9000 conexdes, um valor muito superior.
Adicionalmente, sempre que se adquira um
novo cliente, ¢ esperado que este valor suba
entre algumas centenas a alguns milhares
(aproximadamente entre 600 e 2000), sendo
gue o0 novo sistema tem de ser capaz de
capaz de suportar este aumento de
utilizadores. Outro ponto relacionado com
a necessidade de escalar horizontalmente,
consiste em permitir que o sistema seja
tolerante a falhas, algo que ndo ¢ possivel
se somente um servidor puder ser
executado ao mesmo tempo. O motivo pelo
qual o sistema ndo ¢ horizontalmente
escalavel, deve-se ao funcionamento geral
de um sistema de comunica¢do PubSub,
onde independentemente do servidor o
cliente esta conectado, este tem de receber
eventos que podem ser enviados noutros
servidores.

A inexisténcia de ferramentas de
monitorizacdo e de detecdo erros dificulta a
manutencdo do sistema, no entanto, sendo
que nenhuma funcionalidade em que este
era utilizada era considerada critica, ndo
houve nenhum incentivo para desenvolver
estas, no entanto, sendo que este sistema
passou a ser utilizado por clientes finais, ¢é
importante ser capaz de identificar os erros
0 mais rapido possivel, assim como ser
capaz de monitorizar a sua utilizacdo de
forma a planear o melhor possivel o
escalamento automatico.

1. Objetivos

Tendo sido explicado os problemas
que levaram a desenvolver um novo
sistema, é necessario definir os objetivos a
serem cumpridos pelo novo sistema,
lembrando que o novo sistema vai substituir
um existente, € necessario que este seja
capaz de suportar 0s casos de uso atuais,
assim como criar 0 maximo de
compatibilidade possivel. Portanto, sendo
0s requerimentos do novo sistema similares
com o anterior em producédo, é necessario
analisar como o atual funciona e ver que
problemas apresenta. Os principais pontos
a ter em conta no projeto sao:

» Comunicacao bidirecional entre cliente e
servidor através WebSockets;

» Comunicagdo usando Pub/Sub (publicar e
subscrever) em tépicos (nomeados de
channels);

* Restringir o acesso a topicos de acordo
com as autorizagoes;

« Suporte para multiplos tenants, existindo
configuracBes por cada tenant;

» Cria¢do explicita de topicos e com
configurac@es por cada;

 Rastreamento da presenca dos clientes em
cada tépico;

* Armazenamento das mensagens enviadas
em cada tépico.

1. Estado da Arte

Nesta parte vai ser mencionado
técnicas utilizadas para enviar informacao
em tempo real tem evoluido, protocolos que
tenham vindo a ser criados e qual foi o
escolhido para este projeto.
Adicionalmente, séo selecionados projetos
de cddigo aberto e servigos comerciais que
podem potencialmente ser utilizados de
forma a tentar a cumprir os objetivos deste
projeto.

81

A. Evolucédo de comunicacdo em tempo

real

Comunicacdo em tempo real ndo é um
topico novo e estd presente em varias
aplicacOes, principalmente em aplicagdes
de mensagens, no entanto, em aplicagdes
web nem sempre existiu uma forma de criar
uma ligacdo bidirecional entre cliente e
servidor. Sendo necessario que aplicacGes
web tenham a possibilidade de realizar uma
comunicagdo com os servidores primeiro é
necessario conhecer as opgoes existentes e
como estas foram evoluindo.

Inicialmente, em aplicacbes Web nao
existia a possibilidade de criar ligagdes
bidirecionais com servidores utilizando as
APIs fornecidas pelos browsers, de forma a
resolver esta limitacdo, em 2011 um novo
protocolo foi padronizado Fette e Melnikov
[1] como RFC 6455, este protocolo ficou
conhecido como WebSockets e é atualmente
a forma padrdo de comunicagédo
bidirecional com servidores em aplicagdes
Web. Em outras aplicagdes ndo web, estas
limitacBes ndo existiam, portanto cabia a
cada desenvolvedor utilizar a sua
implementacao ou reutilizar uma existente.

Antes da criagdo do protocolo
WebSockets, a técnica long polling era uma
forma comum de simular comunicacao
bidirecional, assim como mencionado pela
Internet Engineering Task Force [1], “web
applications that need bidirectional
communication between a client and a
server [...] has required an abuse of HTTP
to poll the server for updates while sending
upstream notifications as distinct HTTP
calls” (The WebSocket Protocol) (capitulo
1.1, 1° paragrafo), visto que os pedidos
HTTP funcionam como request-reply
(pergunta-resposta) de forma unidirecional
(cliente para servidor), ndo existia forma de
um servidor notificar o utilizador que um
evento tenha acontecido no momento, ou
seja, uma aplicacdo cliente teria que
periodicamente realizar um pedido HTTP
ao servidor de forma a verificar que novos
eventos tenham ocorrido. Tendo como
exemplo uma aplicacdo de chat, onde

existem largos periodos sem atividade, €
possivel que grande parte destes pedidos
néo tenham informagéo nova
desperdicando recursos, ou entdo, caso 0
periodo entre pedidos seja longo é possivel
que demore demasiado tempo para receber
nova informagdo. Utilizando o mesmo
exemplo, numa conversa entre duas pessoas
e com intervalo entre pedidos de 5
segundos, uma mensagem pode demorar
até esse mesmo intervalo sO para ser
recebida pela outra pessoa.

De forma a evitar a quantidade de
pedidos realizados e a reduzir o tempo que
demora a receber informagéo, o servidor
artificialmente demora mais tempo para
enviar uma resposta, esperando que exista
nova informacdo ou que tempo limite de
conexao tenha sido atingido. Esta parte é a
origem do nome Long na técnica Polling.
Desta forma, o tempo de atraso a receber a
mensagem seria no Maximo o tempo de
receber a Ultima resposta mais o tempo de
iniciar um novo pedido, algo que poderia
demorar segundos que passou para
milissegundos, além de reduzir
consideravelmente a quantidade de pedidos
a serem feitos.

Com a criacdo do protocolo WebSockets,
a técnica long polling deixou de ser usada
em novos projetos e serve como alternativa
caso uma conexao WebSocket ndo seja
possivel. No entanto, embora WebSockets
seja 0 padrdo existem outras opc¢des para
permitir que o servidor comunique com o
cliente tais como: Server-Sent Events, Web
Push e HTTP Streaming.

Server-Sent Events ou SSE, assim como
definido por Roome e Yang [2] no RFC
8895, permite ao servidor enviar
informacao para o cliente por HTTP pela
duracdo da conexdo, ao contrério do
protocolo WebSockets, este somente
permite uma comunicacao unidirecional de
servidor para cliente, e ndo suporta o envio
de informacdo em formato binario. Visto
que este protocolo somente permite 0 envio
de informagdo de servidor para cliente,
pedidos adicionais tém de ser feitos caso o

82

cliente precise de enviar informacéo para o
servidor.

O Web Push, conforme definido por
Thomson e Damaggio [3] no RFC 8030,
torna possivel o envio de informac&o para o
cliente, no entanto, este costuma ser
utilizado para o envio de notificagdes e néo
de dados em geral, sendo as mensagens
enviadas acompanhadas por titulo,
conteudo, e exigem que os clientes aceitem
uma permissdo para receber esta
informacdo. Embora esta opcdo nao seja
adequada para envio de informacdo em
tempo real, esta pode servir como
alternativa para o envio de informagéo
quando é necessario que a informacao seja
recebida mesmo que o cliente ndo esteja
ligado a um dos servidores.

O HTTP Streaming é relativamente
similar ao Server-Sent Events, este também
permite 0 envio de informacdo para o
cliente de forma unidirecional. Este
funciona enviando informacdo sem
tamanho definido, pondo a aplicacdo
cliente constantemente a espera dos
proximos dados até a conclusdo do pedido
HTTP.

Tendo revisto 0s meios de comunicacao
disponiveis, o protocolo WebSockets
aparenta ser a melhor opcao,
principalmente por ser o protocolo padréo
na industria e pela sua capacidade de
comunicagdo bidirecional, no entanto,
outros protocolos poderao ser
implementados quando a bidirecionalidade
ndo for necessaria, preferencialmente
utilizando Server-Sent Events.

Escolhido o protocolo WebSockets,
convém conhecer o seu funcionamento,
assim como mencionado previamente, este
permite comunicacdo bidirecional entre
cliente e servidor, esta é estabelecida
utilizando HTTP inicialmente que ap6s um
handshake ¢ estabelecida. Este protocolo é
fundamentalmente dividido em duas partes:
0 handshake e a transferéncia de dados.

No handshake, o pedido é realizado pelo
cliente enviando a intencdo de transformar
a conexdo unidirecional em uma

bidirecional (com o nome de Upgrade no
protocolo) ao qual o servidor devera
responder que estd a trocar o protocolo,
apos esta parte a conexdo € considerada
estabelecida. Na transferéncia de dados, é
usado o conceito de mensagens, sendo cada
composta por um ou mais frames. Cada
frame tem um tipo associado, tendo cada
frame pertencente & mesma mensagem o
mesmo tipo. De forma geral, existem 3
tipos de dados, sendo textual, binério e de
controle. No tipo textual a informacéo é
interpretada como UTF-8 enquanto no tipo
binario a interpretacdo é deixada a
responsabilidade da aplicacdo, para o
controle, que ndo tem como objetivo
transferir dados da aplicacdo, séo usados
como sinalizacdo da conexdo, como por
exemplo PING, PONG e CLOSE. Estes
Gltimos PING e PONG tem como propdsito
verificar se a conexdo ainda se encontra
ativa, principalmente quando a aplicacéo
envolve pouco tréfego. O transporte de
mensagens numa conexdo com protocolo
WebSocket é similar a uma conexdo TCP,
este apenas junta um mecanismo de
framing que reduz essa responsabilidade na
aplicacdo, quanto ao formato dos frames
ndo sera mencionado tendo em conta que
ndo faz parte do objetivo deste documento.

B. Solucbes existentes

Tendo em conta o protocolo escolhido e
0s pontos a serem considerados, foi
realizada pesquisa sobre solucbes ja
existentes que suportam os pontos definidos
e a0 mesmo tempo tentar perceber de que
forma estas solucdes estruturam as solucdes
e 0 que estas permitem. Estas solucbes
incluem tanto projetos e bibliotecas de
codigo aberto como servigos, as principais
solugdes encontradas séo as seguintes.

e Cddigo aberto:
Centrifugo;
Mercure;
Phoenix;
VerneMQ);
Emitter;

O O O O

83

HiveMQ;

(@]
o EMQX;
o SocketCluster;
o Soketi;
o Signal-R;
e Servigos:
o Ably;
o PubNub;
o Pusher;
o Fanout.

Deste conjunto existem algumas opgoes
que funcionam como um broker de
mensagens, utilizando protocolos ja
existentes como MQTT, deste conjunto
temos os seguintes:

Centrifugo [4] é uma aplicacdo que serve
como um broker de mensagens. Esta
aplicagdo suporta a distribuicdo de
mensagens com o0s protocolos WebSockets
e gRPC e com o envio de mensagens por
pedido HTTP. E possivel de escalar
horizontalmente utilizando através da
utilizacdo de um dos engines suportados
pela aplicagdo. De forma a permitir que os
clientes possam enviar mensagens, estes
precisam de uma autorizacdo extra criada
por servidores, ou que estes sirvam como
intermediarios para o envio de mensagens.

O Mercure [5] é um broker de
mensagens, com distribuicdo de mensagens
utilizando SSE (unidirecional) e com o
envio de mensagens por pedido HTTP. A
possibilidade de escalar horizontalmente
exige o uso de um servico oferecido pelos
desenvolvedores para a gQestdo da
infraestrutura. Sendo o protocolo de
comunicagdo principal SSE este remove a
possibilidade de comunicacéo bidirecional,
para que o0s clientes possam enviar
mensagens, precisam de uma autorizacdo
extra criada por servidores, ou que estes
sirvam como intermediarios para o envio de
mensagens.

O Phoenix Framework [6] € um
framework para a linguagem de
programacdo Elixir, com suporte para

comunicacdo em tempo real e escalavel
horizontalmente. Sendo desenvolvido em
Elixir permite a utilizagdo da Erlang VM,
desenvolvida com suporte para tolerancia a
falhas e maioritariamente utilizada em
sistemas de telecomunicacdes tornando
uma excelente escolha. O protocolo de
comunicacdo € utilizado é WebSockets e
tem suporte para praticamente todos os
outros protocolos sendo WebSockets o
principal. Infelizmente, Elixir ou Erlang
sdo linguagens ao qual ndo existe
conhecimento interno para a sua utilizagéo.

VerneMQ [7], HiveMQ [8], Emitter [9] e
EMQ [10] sdo tecnologias sdo baseadas no
protocolo MQTT, embora com algumas
diferencas nas suas implementacdes, todas
estas oferecem possibilidade de escalar
horizontalmente. A utilizacdo do protocolo
MQTT permite que a comunicagdo seja
feita diretamente por TCP ou WebSockets.
O protocolo MQTT tem como meio de
comunicacdo principal Pub/Sub, no
entanto, algumas funcionalidades extras
podem a vir ser necessarias, algo que
podem ser implementadas utilizando
topicos no MQTT.

SocketCluster [11] é uma biblioteca de
javascript que permite a comunicacdo no
formato de Pub/Sub e é capaz de escalar
horizontalmente. Infelizmente a
documentacao nédo é extensiva,
principalmente quanto ao subprotocolo.
Adicionalmente, esta opcdo tem como
objetivo primario servir como processador
direto das mensagens recebidas, enquanto o
objetivo pretendido € somente a
distribuicdo, mas é possivel adaptar para o
caso necessario.

Soketi [12] é um servidor de WebSockets
compativel com o subprotocolo Pusher v7,
permitindo que clientes desenvolvidos para
esta plataforma possam ser reutilizados,
adicionalmente, € capaz de escalar
horizontalmente atraves da aplicagdo Redis.

Signal-R [13] é uma biblioteca criada
pela Microsoft que oferece a possibilidade

84

de comunicacdo em tempo real com
clientes, esta biblioteca funciona somente
em servidores desenvolvidos em C# com a
tecnologia ASP.NET. Esta opcéo é capaz de
escalar utilizando a aplicagdo adicional
Redis ou um servico desenvolvido pela
Microsoft disponivel na Azure Cloud.

Desta lista de opcbes com cddigo aberto
a opcdo que mais se adequa € o framework
Phoenix. Este é desenvolvido em elixir que
por sua vez € executado na Erlang VM, a
qual tem acesso a um conjunto de
bibliotecas nomeadas de OTP (Open
Telecom Platform) que facilita o
desenvolvimento de aplicacdes
distribuidas. Adicionalmente esta
linguagem ¢é utilizada por grandes
plataformas como WeChat e WhatsApps,
que servem como comprovativo para a sua
escalabilidade. No entanto, Elixir ou Erlang
sdo linguagens ao qual ndo existe
conhecimento interno para a sua utilizagéo.

Quanto a opcdo Mercure, esta nao
suporta o0 envio de mensagens
bidirecionais, incluindo de clientes néo
autenticados, este exige que outros
servidores sejam capazes de enviar
mensagens pelos clientes ou que sirvam
como meio de autenticacdo dos mesmos.

VerneMQ, HiveMQ, Emitter e EMQ séo
possiveis opcdes, no entanto estas ficam
somente pelo protocolo MQTT, no entanto
funcionalidades adicionais além das
definidas no protocolo MQTT, teriam de ser
desenvolvidas a parte, visto que o suporte
para modificacbes € relativamente
reduzido.

A opcdo Soketi, apresenta dois
problemas, primeiro ser desenvolvida em
javascript que por sua vez é executado em
node.js, embora seja plataformas viaveis,
este tipo de aplicacéo exige processamento
simultaneo e paralelismo, tendo em conta
que 0 node.js é executado como um
processo de um unico thread, este apresenta
desvantagens quanto as outras
possibilidades, adicionalmente, para
utilizar eficientemente 0s recursos
disponiveis seria necessario varias

instancias da mesma aplicagéo a correr em
simultineo com espacos de memoria
separados.

Por fim, Signal-R € uma boa opc¢éo para
empresas que ja usam C#, no entanto, este
ndo é o caso, adicionalmente, de forma a
escalar horizontalmente a aplicagéo Redis
pode ser utilizada, mas o principal método
é com um servico desenvolvido pela
Microsoft disponivel na Azure Cloud, algo
que também ndo é usado internamente.

Quanto aos servigos, a maior parte
destes oferecem uma plataforma para a
comunicagdo em tempo real, com suporte
com varios protocolos e com escalabilidade
gerida, no entanto, grande parte destes tem
limitacBes no nimero de conexdes.

Ably [14] é uma plataforma de
mensagens Pub/Sub com garantia de envio,
ordem de envio, e com suporte para varios
protocolos tais como MQTT, STOMP,
AMQP, PUSHER e PubNub. Permite
conexdes com os protocolos WebSockets,
SSE e 0 envio de mensagens por HTTP.
Adicionalmente, permite o rastreamento da
presenca dos clientes, envio de notificacdes
push, oferece um histérico de mensagens e
com suporte para restaurar desconexdes
abruptas.

PubNub Inc [15] é uma plataforma de
mensagens Pub/Sub sem garantia de envio
ou ordem de envio, os protocolos utilizados
ndo sao especificados, no entanto, segundo
os exemplos apresentados utilizam a
técnica long-polling. Esta plataforma
também permite o rastreamento da presenca
dos clientes, envio de notificagbes push e
processamento de mensagens enviadas.

Pusher Ltd [16] é uma plataforma
similar as anteriores, funciona igualmente
com mensagens Pub/Sub mas sem garantia
de ordem e envio. Esta utiliza conexdes
com o protocolo WebSockets e sub-
protocolo Pusher, um protocolo
proprietario. Assim como as opgoes
anteriores também permite o rastreamento

85

da presenca dos clientes. Algumas
funcionalidades que ndo oferecem sdo um
historico de mensagens, recuperacdo de
mensagens perdidas. Notificacbes push séo
possiveis, mas fazem parte de um servico a
parte oferecido pela mesma empresa.

Fanout [17] é uma que opcéo oferece
tanto uma versdao com cddigo aberto quanto
um servico. A opcdo de codigo aberto serve
como um intermediario entre outros
servicos onde estes podem enviar
atualizages para serem distribuidas pelos
clientes, esta opcdo ndo é horizontalmente
escalavel sem adaptacdo dos servigos para
0 envio de mensagens utilizando um
protocolo de comunicacdo ZeroMQ ou
entdo publicando para todas as instancias. A
versdo de servico, oferece mais
funcionalidades, como organizacdo de
channels (equivalente a um tdpico) por
realms (um elemento que agrupa channels).
Ambas opgOes permitem conexdes com 0s
protocolos WebSocket, SSE e long-polling.
Ao contrario das opcbes anteriores, O
rastreamento da presenca de clientes, envio
de notificacbes push ndo suportadas,
adicionalmente o suporte para ordem e
garantia de envio das mensagens é parcial.

Estas quatro op¢des, sdo plataformas que
oferecem uma maior abstracdo aos sistemas
Pub/Sub, estas oferecem funcionalidades
tipicamente ndo existentes em um message
broker tais como o rastreamento de
presencas, envio de notificagbes push e
histérico de mensagens. Desenvolver estas
funcionalidades em algumas das opcoes
apresentadas que ndo as oferecem
necessitam modificagcdes no projeto em si,
algo que iria exigir familiaridade com o
funcionamento interno destes. Quanto as
plataformas apresentadas, nomeadamente
Ably, PubNub, Pusher e Fanout, as que
mais cumprem 0s pontos a ter em
consideracdo sdo Ably, Pusher e PubNub na
ordem que melhor cumprem. Embora estas
opcbes ndo tenham integragdo com a
aplicacdo NATS, seria possivel adaptar para
0 que a plataforma oferece ou entdo

desenvolver uma ferramenta adicional que
se realiza a conversao.

A plataforma Pusher quando falamos de
meios de comunicagdo e funcionamento
dos mesmos, cumpre 0S requisitos,
incluindo o rastreamento de presenca
atraves de tdpicos especializados para o
caso, topicos publicos e privados utilizando
um prefixo no seu nome. No entanto,
nenhum dos tipos de tdpicos tem a
capacidade de armazenar um histérico de
mensagens. Outro problema comum em
plataformas, que ocorre neste caso é o
nimero de conexdes, cada loja tem a sua
aplicacdo e o seu conjunto de clientes, e a
empresa tem de estar preparada para uma
elevada quantidade de conexdes em
simultaneo, no caso do Pusher o plano
maior listado oferece no maximo 30 mil
conexdes, exigindo além disso negociar
com a empresa.

A plataforma PubNub, ndo estabelece
conexdes utilizando o protocolo
WebSocket, em vez disso utiliza pedidos
HTTP e uma espécie de long-polling o
custo de performance e energia para as
aplicacBes acabar por ser mais elevado, e
ndo sendo uma conex&o bidirecional este
ndo permite o envio bidirecional de
mensagens, no entanto, todas outras
funcionalidades estdo presentes.

Por fim, Ably é a plataforma que melhor
cumpre 0S pontos previamente
mencionados, esta permite conexdes por
WebSockets e outros protocolos,
rastreamento de presengas, garantia na
ordem e entrega de mensagens,
armazenamento opcional das mensagens, e
agrupamento de topicos permitindo um
conjunto de topicos ter a mesma
configuracdo. No entanto, assim como no
Pusher o limite de conexdes se mantéem.

C. Solugéo personalizada
Apls todas estas possibilidade terem

sido analisadas, foi decidido desenvolver
um novo sistema em vez de reutilizar as

86

opgbes mencionadas pelos seguintes
motivos:

e Extensibilidade;

e Limites da API,

e Adaptacédo ao caso de uso;

e Imprevisdo de custo;

e Conhecimento

empresa.

existente na

Muitos destes servicos oferecem
sistemas simples de PubSub, no entanto,
pouca personalizacdo além disso, sendo que
caso seja necessario funcionalidades além
das oferecidas em conjunto com o sistema
PubSub, é necesséario as desenvolver num
sistema separado. Por exemplo, um sistema
de presenca em conjunto com meta dados
sobre todos utilizadores subscritos num
topico é uma funcionalidade que pode estar
embutida num tépico, mas desenvolver um
sistema s para esta funcionalidade nédo €
pratico.

Dentro de todos servicos apresentados, 0
gque mais se destacou por ser 0 mais
préximo de atender a todos requisitos é o
servico Ably, no entanto, assim como 0s
servicos em geral apresenta limites na
utilizacdo da sua API, como por exemplo,
limites de eventos num topico por segundo
e maximo de utilizadores subscritos num
channel. Adicionalmente, sendo o nimero
de conexdes um valor que flutua bastante,
assim como o namero de eventos enviados
para topicos, prever 0s custos dos servicos
torna-se dificil e sem forma de implementar
um teto maximo

Quanto as opcbes de codigo aberto,
muitas destas ndo cumprem 0s requisitos
necessarios, sendo necessario adaptar os
projetos e ter o custo extra de manutengédo
de manter o projeto atualizado com novas
funcionalidades implementadas no codigo
base. De todas as opgOes, a que melhor
cumpre 0S requisitos necessarios é o0
framework Phoenix, utilizando a tecnologia
presente na Erlang VM este permite criar
um sistema distribuido, e adicionalmente o
framework Phoenix permite customizar o
funcionamento dos tdpicos. No entanto,
este framework utiliza as linguagens Elixir

e Erlang, que sé@o linguagem ao qual ndo
existe conhecimento interno para sua
utilizagéo.

Tendo esta informacdo em conta, a
criagédo de um novo sistema foi 0 caminho
decidido de forma reutilizar o
conhecimento existente da linguagem Go
[18] e ferramentas ja utilizadas
internamente como a aplicacdo NATS.

IV. Metodologia

Para levantamento de requisitos, foi usado
como base o sistema ja presente em
producdo, visto que grande parte das suas
funcionalidades sdo necessarias por outros
servicos dentro da empresa NAPPS.
Estando a substituir um sistema em
utilizacdo internamente, j& existe um
conhecimento prévio de problemas que
existiam, ou melhorias desejadas. Portanto,
utilizando o feedback dos utilizadores do
sistema, em conjunto com funcionalidades
futuras previstas, foi realizado um
brainstorming onde se definiu o que o
projeto precisava, assim como vai ser Vvisto
ao longo deste documento.

A. Tarefas

O projeto esté dividido em varias tarefas,
algumas das tarefas vdo envolver varios
pontos que serdo descobertos ao longo da
fase de pesquisa e possivelmente em
adaptacdes a novas funcionalidades. As
tarefas definidas até ao momento séo:

o Tarefa 1 — Pesquisa de possiveis
solucdes existentes e avaliacdo das
mesmas;

e Tarefa 2 — Pesquisa do
funcionamento das atuais solucdes;

o Tarefa 3 — Elaborar funcionamento
do projeto;

o Tarefa 4 — Avaliar possiveis
problemas de migragédo para novo
projeto;

e Tarefa 5 — Desenvolvimento de
prototipo;

87

o Tarefa 6 — Teste de protétipo e
avaliar possiveis problemas;

o Tarefa 7 — Corrigir possiveis
problemas ou adaptar para
possiveis utilizacdes;

o Tarefa 8 — Teste em Cloud (AWS);

o Tarefa 9 — Criacdo de testes para
cobrir légica de projeto;

o Tarefa 10 — Implementacdo em
producdo em fase de teste.

Ap6s mencionadas as tarefas para
realizacdo, passo a elaborar o que cada
constitui.

Na tarefa 1, é realizada uma pesquisa por
possiveis solu¢es comerciais ou de cddigo
aberto e analise rpida se estas podem
cobrir os casos de utilizacdo atual, na tarefa
2 apos a eliminacao de solugdes que nao se
adaptam aos casos de utilizacdo, iremos
verificar mais profundamente o0 Seu
funcionamento, e como se comportaria em
funcionalidades planeadas e custos para as
mesmas. Utilizando o conhecimento do
funcionamento obtido pelas tarefas 1 e 2, é
elaborado um plano geral com todas as
funcionalidades necessérias e o0 seu
funcionamento interno, ap6s esta sera
elaborado uma anélise de problemas que
possam existir ao realizar a migracdo do
projeto anterior para o atual, quanto menor
0 custo de migracdo menor serd o tempo
para introduzir em producdo e atualizacéo
de sistemas em producéo, e esta etapa sera
a tarefa 4.

Ap0s ter sido realizada uma analise do
funcionamento e tendo sido verificado
possiveis partes problematicas, é realizado
0 desenvolvimento de um protétipo do
projeto como tarefa 5, o0s testes mais
manuais serdo realizados e serdo avaliados
possiveis problemas que tenham ocorrido,
este passo corresponde a tarefa 6, para
tarefa 7, serd a correcdo dos erros que
tenham sido encontrados e adaptacédo para
funcionalidades que tenham surgido ou
adaptacéo das atuais.

Por fim, o funcionamento sera testado na
cloud AWS e o desenvolvimento de testes e

ferramentas de andlise para ser possivel
inspecionar os funcionamento e erros que
ocorram com o projeto em funcionamento
na cloud, e como Ultima etapa o projeto sera
posto em producdo, mas em fase de teste
com trafego real, mas em componentes que
ndo sejam criticos, estas trés partes serdo as
tarefas 8, 9 e 10.

V. Desenvolvimento

Neste capitulo sdo apresentadas as
decisfes que foram tomadas inicialmente,
nomeadamente a estrutura inicial e a
utilizacdo da aplicacdo NATS. Também é
apresentado 0s motivos que levaram a
desconsiderar a aplicacdo NATS, assim
como a alternativa que foi implementada e
por fim as funcionalidades existentes na
aplicacdo.

Portanto seguindo o sistema anterior, existe
somente um servidor onde todos os clientes
estdo conectados. Caso este servidor falhe,
os clientes ficam sem forma de utilizar o
servico. De forma a evitar que isso
aconteca, € necessario adicionar mais
servidores, assim caso um falhe existem
outros que podem receber as conexdes. A
isto nomeamos de ser horizontalmente
escalavel, caso um servidor falhe ou nédo
seja capaz de aguentar o nimero de clientes
atual, existem outros servidores para
receber estes clientes.

No entanto, quando falamos num sistema
PubSub é necessario que quando um evento
é publicado num topico, este tem de ser
transmitido para todos os clientes subscritos
neste mesmo topico, independentemente a
qual servidor estes estdo conectados. De
forma a resolvermos este problema, tinha
sido inicialmente planeado a utilizacdo da
aplicagdo NATS, para realizar a
intercomunicacao entre os servidores, desta
forma, sempre que um evento € publicado
pelo cliente, é transmitido pelo NATS para
todos os servidores interessados no topico.
Com esta solucdo, foi observado um
problema com a utilizagdo do NATS, sendo
este a ineficiéncia introduzida na passagem
de um evento, principalmente quando é

88

aumentado o numero de servidores em
funcionamento.

Na figura 31, existem 3 servidores e 3
instancias da aplicacdo NATS. Existe um
nimero mais elevado de servidores de
forma a ter redundancia em caso de falhas e
de forma a ser capaz de receber um maior
numero de conexdes. Nesta figura temos o
Cliente 1 que publica um evento que tem de
chegar aos Servidores 2 e 3, para isso, assim
que o Servidor 1 receba o evento publicado
pelo Cliente 1, este tem de enviar o evento
para 0 NATS 1, que por sua vez envia para
0 NATS 2 e 3 que por fim enviam aos
Servidores 2 e 3. Portanto, foi necessario
que o evento fosse passado 5 vezes por
rede, relembrando que cada passagem exige
a codificacdo da mensagem por quem envia
e descodificacdo por quem recebe.

Servidor 3

Evento

MATS 3

Evento

Evento
MATS 1 e MATS 2
. E'.."EI“ItU'. . E‘n"l:l'ltﬂ_

Servidor 1 Servidor 2

E

Evento

Cliente 1
Figura 31 - Exemplificacdo da ineficiéncia da
intercomunicacdo com a aplicacdo NATS

De forma a evitar esta ineficiéncia,
podemos ter os servidores a comunicar

entre si em vez de utilizar a aplicacdo NATS
como intermediario. Para isso, é necessario
implementar algo que seja capaz de
substituir a utilizacdo da aplicacdo NATS,
ou seja, é necessario resolver os 3 seguintes
pontos:

» Consenso;

* Intercomunicagao;

* Distribuigao.

O consenso consiste em ter conhecimento
de quais servidores estdo ativos. A
utilizagdo da aplicagdo NATS evitava esta
necessidade, afinal os eventos eram
publicados no NATS e este iria distribuir o
evento por quem esta interessado. A
intercomunicagdo consiste no envio de
informacdes e eventos entre o0s servidores.
A distribuigdo consiste em como os topicos
ou channels sdo distribuidos pelos

servidores.

A. Consenso

r

O consenso ¢ um dos problemas
fundamentais em sistemas distribuidos, este
exige que multiplos membros concordem
em um conjunto de valores mesmo nha
presenca de falhas. Um protocolo de
consenso que seja capaz de tolerar falhas
deve cumprir as seguintes propriedades:
terminacdo, sendo que eventualmente todos
membros concordam com um valor;
integridade, caso os membros proponham o
mesmo valor, entdo outros devem decidir
no mesmo Vvalor; concordancia, todos
membros devem concordar no mesmo
valor. Algoritmos de consenso tendem a
confirmar um valor quando a maioria dos
membros do cluster esteja disponivel, por
exemplo, um cluster de 5 membros pode
continuar a operar com a falha de dois
membros, no entanto, caso mais que dois
falhem estes deixam de conseguir alterar os
valores e somente retornam os valores
previamente acordados.

Portanto, 0 consenso em sistemas
distribuidos é um processo em que varios
membros de um sistema distribuido
trabalnam em conjunto para tomar uma

89

decisdo em comum. Este processo ¢é
necessario quando ha varios componentes
no sistema e ¢é preciso chegar a um acordo
sobre qual acdo deve ser tomada. Por
exemplo, num cluster, é necessario que
todos os membros saibam qual membro ¢
responsavel por determinada tarefa ou quais
dados estdo disponiveis em cada membro.
Para alcancar o consenso, 0s sistemas
distribuidos utilizam algoritmos de
consenso, como o algoritmo Paxos ou o
algoritmo Raft, que s@o projetados de forma
a garantir que todos os membros no sistema
tenham a mesma visdo dos dados e das
acOes a serem tomadas. Estes algoritmos
permitem que os membros elejam um lider
ou coordenador que tomara as decisoes,
enquanto 0s outros membros seguirdo as
instrugdes do lider. O consenso em sistemas
distribuidos é fundamental para garantir a
consisténcia e a integridade dos dados em
todo o sistema. Neste sdo considerados 0s
protocolos Raft e Gossip como protocolos
de consenso.

B. Raft

Raft ¢ um algoritmo de consenso com
propdsito de ser simples de compreender,
este ¢ equivalente ao algoritmo Paxos a
nivel de tolerancia de falhas e desempenho.
Este atinge o consenso através de um e
somente um lider eleito. Neste protocolo,
cada membro tem o cargo de lider ou
seguidor e pode ser um candidato caso um
lider ndo exista. O membro com o cargo de
lider tem a responsabilidade de replicar logs
para 0s seguidores, adicionalmente, este
regularmente informa os seus seguidores da
sua existéncia através do envio de um
heartbeat. Cada seguidor tem um ciclo de
intervalos de tempo em qual espera receber
um heartbeat do lider que ¢ reiniciado
sempre que o receba, no entanto, caso o
intervalo de tempo termine sem o receber,
entdo, o seguidor muda o seu cargo para
candidato e comecga uma eleicdo para um
novo lider. Portanto, o protocolo Raft esta
dividido fundamentalmente em duas partes:
eleicdo de lider e replicacéo de logs.

Quando o algoritmo inicializa ou um lider
falha, um novo lider tem de ser eleito. Neste
caso, ¢ iniciado um novo termo no cluster.
Um termo ¢ um periodo arbitrario no
cluster para o qual um novo lider precisa ser
eleito, cada termo comeca com a eleicdo de
um novo lider. A eleicdo de um lider ¢
iniciada por um membro candidato, este
aumenta o contador de termo, vota em si
mesmo como novo lider e envia uma
mensagem para todos os outros membros a
pedir o seu voto. Cada membro sé pode
votar uma vez por cada termo, e estes votam
a favor do primeiro pedido de voto que
receberam. Caso um candidato receba uma
mensagem de outro membro com um
contador de termo superior entdo este ¢
automaticamente desqualificado e muda o
seu cargo de volta para seguidor. Caso um
membro receba a maioria de votos entdo
este torna-se o novo lider, caso exista um
empate de votos entdo um novo termo ¢
comecado e 0 processo ¢ repetido,
adicionalmente, de forma a evitar ciclos de
empate de votos, cada membro escolhe um
intervalo de tempo aleat6rio, com valores
reduzidos, antes de voltar a tentar a nova
eleicdo. Quanto a segunda parte, a
replicacéo de logs, esta ¢ a responsabilidade
do lider, este recebe pedidos de clientes,
sendo que cada pedido consiste num
comando a ser executado e replicado por
todos membros do cluster. Apds o comando
seja adicionado a lista de logs do lider, este
envia este comando para todos oS
seguidores. Caso 0s seguidores ndo estejam
disponiveis, o lider volta a tentar enviar o
comando por vezes indefinidas até que o
log seja eventualmente adicionado a lista
dos seguidores. Assim que o lider recebe a
confirmacgéo, de metade ou mais dos seus
seguidores, que o comando foi replicado,
este aplica 0 comando ao seu estado local e
0 pedido ¢é considerado como aplicado. Este
protocolo ¢ utilizado quando é necessario
que exista uma forte consisténcia de
informagdes no cluster, sendo permitido
apenas ao lider realizar alteragcBes, um
exemplo comum de utilizagdo deste
protocolo pode ser encontrado nas bases de

90

dados CockroachDB, MongoDB, Neo4j,
TiDB e YugabyteDB. Sendo que somente
um membro do cluster ¢ capaz de realizar
alteracbes, a capacidade do cluster ¢é
limitada pela capacidade do lider. De forma
a resolver este problema, ¢ utilizado o
Multi-Raft, este utiliza multiplos grupos
tendo cada um o seu lider e gerindo uma
seccao da informacéo. No caso de uma base
de dados, podemos ter um grupo por cada
tabela e aplicar alteracbes a grupos
separados aumentando a quantidade de
alteracdes possiveis e distribuindo a carga
entre mais membros. Adicionalmente, caso
somente seja necessario a consulta de
informacdes, esta pode ser realizada a
qualquer seguidor, com o risco de receber
informacdo desatualizada ou entdo realizar
a consulta ao lider para ter a garantia de ter
a ultima informacéo.

C. Gossip

O protocolo gossip ou protocolo epidémico
consiste em um procedimento de
comunicagdo peer-to-peer que assimila a
forma como as epidemias ou rumores se
espalham, neste protocolo cada membro de
grupo periodicamente troca informacéo
com outros membros sobre o seu préprio
estado e sobre o estado de outros membros.
Este protocolo permite que um sistema
distribuido tenha a garantia que a
informacéo é eventualmente distribuida por
todos os membros do grupo sem precisar de
um sistema centralizado a coordenar esse
aspeto. Visto ndo precisar de um sistema
centralizado este protocolo ¢ dos mais
robustos e escalaveis para consisténcia
eventual dos membros do cluster, detecéo
de falhas e permite o envio de informagdes
adicionais durante as trocas de informagéo.

Node

/ ’
Node

Node

Node

\ Node

Figura 32 - Exemplo de cluster a utilizar o protocolo
gossip

Na figura 32 podemos ver um exemplo de
um cluster com 5 membros, neste exemplo
cada membro comunica somente com
outros 2 membros. De forma a propagar
uma informacdo entre todos 0os membros
seriam necessarios 3 ciclos, sendo cada
ciclo uma troca de informagdo entre 0s
membros ap06s cada intervalo de tempo
definido no cluster. Uma exemplificacéo da
propagacao com origem no Node 1 pode ser
observada na figura 33.

Node
10 I 2
cicl0 —
Node e -
i
X [N
| =/ |}
&) |c Node
[+ p 5
|+
| , g /
| /
v J/
& /
Node v 4
3
- Node

Figura 33 - Exemplo de propagacéo

No caso de um cluster com 40 membros e
cada membro comunique somente com
outros 4 membros seriam necessarios
somente 4 ciclos. O artigo "Epidemic

91

Algorithms for Replicated Database
Maintenance” [19] descreve algoritmos de
replicagdo de bases de dados que usam a
propagacao de informacdes entre membros
de um sistema distribuido, este apresenta
uma formula para estimar o tempo de
convergéncia do algoritmo de propagacéo
de informacdes com base no numero de
membros do sistema e na taxa de
propagacao de informaces. Essa formula é
T = O(log(N)/ p), onde N ¢ o numero de
membros do sistema e p é a taxa de
propagacdo de informacdes e O(log(N)) o
numero de ciclos necessarios para que a
informacdo seja propagada por todo o
sistema. Portanto, de forma a calcular
aproximadamente quantos ciclos séo
necessarios para a propagacao de uma
informagdo, iremos nos focar apenas na
parte O(log(N)), desta forma, iremos
usando o seguinte célculo C = logp(N)
onde c ¢ o nimero de ciclos. Portanto, com
40 membros e propagacdo de 4 temos
log,(40) = 2.66, ou seja,
aproximadamente 3 ciclos, no caso de um
cluster com 5 membros e propagagéo de 2
temos log,(5) = 2.32 que também sdo
aproximadamente 3 ciclos.

Vendo o protocolo de alto nivel, num
cluster, cada membro mantém uma lista de
um subconjunto dos membros a que tem
conhecimento, os seus enderegos e alguns
dados adicionais (metadata), e
periodicamente, cada membro atualiza na
sua lista de “vizinhos” os contadores de
heartbeat de acordo com os dados emitidos
por outros membros e envia a informacéo
atualizada para alguns dos membros. Assim
gue um membro tenha recebido uma das
mensagens, esta junta a lista na mensagem
com a sua lista e mantém os dados com o
contador de heartbeat mais elevado no caso
de colisbes. Assim sendo, enquanto o valor
do contador for subindo para um membro é
garantido que este esteja healthy (ativo e
sem problemas) e é considerado unhealthy
(desativo ou com problemas) caso o
contador de heartbeat ndo seja aumentado
durante um intervalo de tempo.

Adicionalmente, durante a troca de
informacdes entre membros ¢ possivel
enviar informacbes extra como por
exemplo, carga media e memoria livre para
que outros membros possam utilizar essa
informacdo para balancear a carga entre
membros. Outra forma de explicar o
protocolo gossip é comparando com a
disseminacéo de rumores numa
comunidade. Assim como no protocolo
gossip, um rumor comega cCom uma pessoa
que o compartilha com alguns amigos
proéximos. Esses amigos, por sua vez,
compartilham o rumor com outros amigos,
e assim sucessivamente. Conforme o rumor
se espalha, este pode ser confirmado,
negado ou at¢é mesmo modificado por
diferentes pessoas ao longo do caminho. O
resultado ¢ uma ampla disseminacdo de
informacdes pela comunidade, com a
possibilidade de chegar a um consenso ou
opinido comum. Da mesma forma, o
protocolo gossip permite a disseminacéo de
informacdes em sistemas distribuidos, onde
diferentes membros compartilham e
modificam informacBes entre si até
chegarem a um consenso ou estado comum.
No caso deste projeto, o protocolo gossip é
baseado em "SWIM: Scalable Weakly-
consistent Infection-style Process Group
Membership Protocol™ [20] com algumas
modifica¢bes. A implementacdo foi criada
pela empresa Hashicorp e foi nomeada de
Serf. Explicando de forma breve e
incompleta, um membro comeca por se
juntar a cluster ja existente ou cria um novo,
caso esteja-se a juntar, ¢ realizada uma
sincronizacdo completa com um membro ja
existente do cluster utilizado o protocolo
TCP e depois comega a realizar trocas de
informagdo assim como referido
previamente. Neste caso, a comunicacao
utilizada para troca de informagoes utiliza o
protocolo UDP com o nimero de
propagacdo de intervalo configuravel.
Nesta implementacdo ¢ apenas enviadas
alteracdes de informacdo com o protocolo
UDP. Mesmo ap6s um membro se juntar ao
grupo algumas sincronizagdes completas
ocorrem com outro membro aleatorio

92

utilizando o protocolo TCP, no entanto,
estas ocorrem com menor frequéncia, 0
intervalo destas transmissdes também pode
ser configurado ou desativado. De forma a
detetar uma falha, um pedido de verificacéo
¢ enviado aleatoriamente num intervalo de
tempo configurdvel, caso o destinatario
falhe a responder dentro de um prazo de
tempo razoavel entdo um pedido de
verificacdo ¢ enviado indiretamente. Um
pedido de verificagdo indireto passa por
pedir a um ndmero configuravel de
membros para realizarem um pedido de
verificagdo ao membro, isto permite
perceber se um membro ndo esta acessivel
por problemas que estejam a ocorrer na
rede. Caso ambas tentativas falnem, entéo o
membro ¢ marcado como suspeito e estas
informagdes séo enviadas para todo cluster
utilizado o mesmo mecanismo de
propagacdo. Por fim, caso o membro
suspeito ndo responda a suspeita num
intervalo de tempo configuravel entdo o
membro ¢é considerado como morto, e
novamente esta informacgdo ¢é propagada
pelo cluster. Outra funcionalidade desta
implementacdo passa por permitir o envio
de eventos e consultas utilizando o
mecanismo de propagacao, algo que pode
ser utilizado, por exemplo, quando a
configuracdo do cluster muda e ¢
necessario que esta alteracdo seja
propagada por todos 0s membros.

D. Escolha de protocolo de consenso

Tendo revisto as opcdes gossip e Raft, a
opcdo escolhida para ser utilizada neste
projeto passa pelo gossip. Tendo como
objetivo que todos membros concordem
com quais membros estdo ativos, o
algoritmo Raft oferece mais
funcionalidades do que as necessarias e
mais restricoes do que a opgdo gossip,
adicionalmente, ndo sendo necessario
armazenar informacdo ou sendo exigido
uma forte consisténcia de informagdo ¢
preferivel a utilizacdo do protocolo gossip
sendo este mais eficiente no consumo de
recursos de processamento e de rede e

permite uma quantidade mais elevada de
membros sendo que o algoritmo Raft tem o
seu melhor desempenho num cluster com 3
a 9 membros enquanto em gossip um
nimero muito mais elevado ¢é possivel, por
exemplo, em gossip um cluster com 100
membros e propagacdo de 4 leva
aproximadamente 3 ciclos a propagar a
informacao.

A utilizacdo de ambos protocolos em
simultaneo também ¢é possivel, utilizando o
protocolo gossip de forma a manter uma
lista de membros ativos, e utilizar o
algoritmo Raft apenas para gerir a
consisténcia de informacdo, no entanto,
como previamente mencionado, a
utilizacdo do Raft limite consideravelmente
0 nimero de membros a serem utilizados
num cluster.

Utilizando o gossip, ¢ possivel manter uma
consisténcia eventual dos membros
presentes no cluster, e esta informacdo ¢é
somente utilizada de forma a realizar
intercomunicacdo entre os membros do
cluster. Nao tendo o protocolo gossip como
objetivo de enviar informacdo de forma
rapida, sera antes utilizada a informagc&o
que este gere para utilizar outro método de
envio de informacé&o para o resto dos dados
aplicacionais, adicionalmente, também ¢
necessario organizar os membros de forma
a evitar e reduzir o nimero de vezes que
uma mensagem tem de ser transmitida.

E. Intercomunicagédo

De forma a realizar a intercomunicacéo
entre membros existem varias
possibilidades, no entanto, as mais
utilizadas sdo Apache Thrift, gRPC ou
entdo usar diretamente uma conexdo TCP e
gerir diretamente o envio de dados. De
forma a simplificar e reutilizar
conhecimento ja existente na empresa, 0
método de comunicacdo escolhido ¢ o
gRPC.

93

O gRPC ¢ um framework de comunicacéo
remota de alta performance, este permite
que aplicativos clientes e servidores
troqguem dados entre si de maneira rapida,
confiavel e eficiente, utilizando protocolos
de comunicacdo padronizados e uma
interface de programacao simples e facil de
utilizar. O gRPC ¢ baseado no protocolo
HTTP/2, o que significa que este suporta
funcionalidades avancadas, como
streaming bidirecional e unidirecional,
compressdo de dados e multiplexacdo de
pedidos. Este é frequentemente utilizado
em sistemas distribuidos e em arquiteturas
baseadas em microservigos para facilitar a
comunicacdo entre diferentes componentes
do sistema, outras funcionalidades deste
framework. De forma a serializar os dados
enviados, o gRPC utiliza Protocol Buffers.
O Protocol Buffers é uma tecnologia de
serializacéo de dados também desenvolvida
pela Google, que permite que estruturas de
dados sejam definidas em um formato de
linguagem neutra e compacta. Estas
estruturas sdo entdo compiladas em codigo
fonte para varias linguagens de
programagdo, O que permite que as
aplicacGes cliente e servidor possam
facilmente trocar dados estruturados entre
Si.

F. Distribuicéo

Tendo uma forma de saber quais membros
estdo presentes no cluster e forma de
comunicagdo entre cada membro, ¢
necessario estabelecer a forma como estes
serdo organizados. De forma a aumentar e
evitar problemas de desempenho, o cluster
ndo tera nenhum membro central que tera
toda a responsabilidade ou que ira atribuir
responsabilidades, em vez disso, cada
membro vai ser responsavel por um
conjunto da carga a ser processada, e a
designacdo de qual membro tem qual
responsabilidade vai ser definida através do
hash ring. Sendo um channel a parte onde
ira ocorrer quase todo o processamento da
aplicagdo, o nome deste em conjunto o

nome do hub vao ser utilizados como chave
para distribuicéo.

G. Hash Ring

Portanto, de forma a evitar este problema,
temos a técnica de anel de hash, ou hash
ring, esta técnica forma um anel virtual
(figura 34), em que cada membro ¢
responsavel por um intervalo continuo de
valores no anel.

Node 2

Node 3

vc‘dell

Figura 34 - Membros do cluster representados num
anel virtual

Figura 35 - Anel virtual com membros de um cluster
e channels

94

Figura 36 - Anel virtual com membros de um cluster
e channels com a falha de um membro

Exemplificando o0s cenarios anteriores
podemos ver na figura 35 como a
distribuicdo dos channels ¢é representada no
hash ring. Portanto, tendo em conta o
mesmo exemplo, podemos ver na figura 36
o resultado do mesmo cenério de falha do
membro "Node 1". Como pode ser visto,
somente um channel precisa de ser
rebalanceado, além de serem precisos
menos rebalanceamentos, também
podemos somente recalcular os channels a
que pertenciam aquele membro, tornando
esta técnica ainda mais eficiente.
Imaginando a situagdo em que um novo
membro se junta ao cluster com o nome
"Node 4" e a sua posicdo no anel ¢
calculada entre 0 "Node 3" e "Node 2"
podemos buscar todos channels a que o
"Node 2" ¢é responsavel e recalcular o seu
responsavel, mais uma vez evitando
recalcular todos os channels. Usando esta
mesma técnica, temos a possibilidade de
saber quem poderd ser o proximo
responsavel de um certo channel, algo que
pode ser utilizado de forma criar um
sistema de redundancia.

H. Novo Sistema

Tendo agora as partes fundamentais do
sistema, com 0 consenso a ser resolvido
com 0 protocolo gossip, a
intercomunicacdo com o framework gRPC
e a distribuicdo utilizando a juncdo do
gossip e hash ring, é importante perceber
como estes irdo funcionar em conjunto.

Em primeiro lugar, temos a parte
responsavel por chegar ao consenso de
quantos membros existem no cluster, esta
parte assim como previamente referida ¢é
gerida pelo protocolo gossip. Portanto,
sempre que um novo membro se junta ou
sai do cluster, este ira refletir no hash ring.
Lembrando, que no hash ring véao ser
mapeados todos os identificadores dos
membros do cluster. Assim sendo, quando
precisamos de distribuir um channel ou
localiza-lo, sera calculada a localizacdo do
channel no hash ring utilizando o
identificador deste. Sabendo a posicdo no
hash ring, podemos facilmente calcular a
qual membro o channel pertence. Portanto,
guando um membro sai ou se junta, a sua
posicdo sera adicionada ou removida do
hash ring e potencialmente sera necessario
recalcular a quais membros os channels
pertencem.

O ponto de intercomunicacao, neste sistema
¢ introduzido quando é necessario enviar
informacdo entre membros, por exemplo,
publicar um evento num channel, exige que
um pedido seja feito ao membro
responsavel por este, ou seja, uma conexao
serd criada ou reutilizada ao membro
destino onde sera enviado o pedido para
publicar o evento. Assim como
mencionado, esta intercomunicacdo sera
realizada com o framework gRPC, de forma
a saber os enderecos para qual a conexao
serd criada, serd utilizado o protocolo
gossip para descobrir esses enderecos.
Portanto, o protocolo gossip ¢ o elemento
principal destes trés pontos, este em juncéo
com os outros dois pontos permite ter bases
para a criacdo de um sistema distribuido.
Existe ainda um ponto.

. Inicializar

Para iniciar um cluster é necessario a
existéncia de mais que uma instancia da
aplicacdo. A uma destas instancias é
indicado os enderecos de rede da outra, para
gue uma conexao seja estabelecida. Assim
que estabelecida, ambas instancias formam

95

um cluster de acordo com o protocolo
gossip, e novas instancias tém de se juntar
ao cluster utilizando 0 mesmo processo.
Para este processo, € necessario o
conhecimento dos enderegos de rede das
novas instancias da aplicacdo, algo que
costuma ser gerido por um service
discovery, ou descoberta de servicos. Este é
um servico utilizado em arquiteturas de
sistemas distribuidos para encontrar e se
conectar a servicos disponiveis numa rede,
este tem um endereco de rede conhecido
por todas aplicacbes que o usam para
registarem a sua presenca e publicarem
informacdes sobre si, tornando mais facil
para outros servicos localiza-los e se
comunicarem com eles. Isto permite que 0s
sistemas distribuidos sejam mais flexiveis,
escalaveis e resilientes, uma vez que 0s
servigos podem ser facilmente adicionados
ou removidos sem afetar a operacao geral
do sistema.

Na empresa ndo existe um service
discovery, visto que o NATS serve como um
servico central que permite a comunicagao
entre servigos, evitando assim a
necessidade de um service discovery.
Portanto, para esta aplicacdo um service
discovery seria Util, mas visto a inexisténcia
de um, foram utilizados meios mais simples
de forma a descobrir outras instancias desta
aplicacdo.

O servigo AWS ECS, é onde a aplicagao vai
ser executada, utilizando Docker
containers. Este servigo oferece uma API,
que permite que sejam consultadas
informagbes sobre as instancias em
execucdo. Portanto, quando uma nova
instancia é criada, esta utiliza esta API, para
consultar todas as placas de rede do mesmo
tipo da aplicacdo, retornando assim o0s
enderegos de rede a que estas € atribuido,
com estes enderecos a aplicacéo realiza um
pedido para se juntar ao cluster, que sera
aceite caso as credenciais da nova instancia
estejam corretas. Para ambientes locais de
desenvolvimento, é utilizado o UDP
Broadcast. Sendo isto uma técnica de
comunicacgdo em rede que envia mensagens
de um emissor para varios dispositivos, sem

gque 0 emissor precise saber exatamente
quem sdo esses dispositivos ou onde estes
estdo localizados na rede. Nesse método, o
emissor envia uma mensagem de difuséo
(Broadcast) para um endereco IP especial,
que é reconhecido por todos os dispositivos
conectados na rede. Assim, todos o0s
dispositivos conectados na rede que estdo a
escuta nesse endereco IP especial, podem
receber a mensagem enviada pelo emissor.
Quando os outros membros recebem a
mensagem enviada, estes podem anunciar
sua presenca na rede e permitir que outros
membros os descubram de maneira facil e
répida.

V. Resultados

Assim como previamente mencionado,
antes de expor o0 novo sistema as aplicacdes
moveis, foi feito um teste de quantas
conexdes um cluster com 3 membros seria
capaz de suportar, em servidores com
somente 0.25 vCPU e 0.5 GB de RAM.
Neste teste, cada membro do cluster foi
capaz de suportar aproximadamente 15 mil
conexdes num total de aproximadamente 45
mil conexdes, ndo sendo capaz de ter mais
conexfes devido ao limite de RAM nos
servidores. Utilizando servidores com
maior capacidade o cluster é capaz de
aumentar a quantidade de conexfes com o
mesmo numero de membros, no entanto, o
objetivo era ver a capacidade de
distribuicdo e tolerancia a falhas. Estes
valores obtidos sdo muito superiores aos
9000 atualmente esperados, além de ser
capaz de suportar falha dos membros sem
indisponibilizar o servico.

Apos o teste de conexdes foi realizado outro
teste com o objetivo de avaliar o tempo que
um cluster demora a ajustar os channels
pelos membros. Neste teste existem 3
membros no cluster e um quarto €
adicionado normalmente e removido
repentinamente de forma a simular uma
falha. Apds cada ajuste é coletado a partir
dos logs de cada membro o tempo que o
ajuste demorou em milissegundos, para
clarificar, s6 € apontado a duracéo do ajuste

96

e ndo de detecdo que o membro foi
adicionado ou removido.

Para este teste, foram escolhidas 4
varia¢cdes com 5 rondas cada, nestas variam
0 numero de channels e o numero de
clientes, no entanto estes ndo ultrapassam
dos 3. As 4 variag0es sdo as seguintes:

12 Variacéo:
e 1 cliente conectado ao Node 1;
e 500 channels;
e Identificador de channels em
UUIDs (Universal Unique
IDentifiers).

2% Variacéao:
e 3 clientes, um conectado a cada
Node.
e 1500 channels;
e Identificador de channels em
conjunto de 20 caracteres aleatdrios.

3% Variacao:
e 3 clientes, um conectado a cada
Node.
e 4500 channels;
e Identificador de channels em
conjunto de 40 caracteres aleatdrios.

42 Variacao:
e 50 clientes distribuidos pelos
Nodes.
e 100000 channels;
e Identificador de channels em
conjunto de 40 caracteres aleatorios.

A diferenga nos identificadores do channels
deve-se ao posicionamento no hash ring. Na
primeira variagdo grande parte dos
identificadores channels eram semelhantes,
0 que levava que estes tivessem 0 mesmo
Node como responsavel. Com o0s
identificadores gerados aleatoriamente
houve uma melhor distribuicdo pelos
Nodes, assim como pode ser observado nos
resultados representados na figura 37 e
figura 38.

Tempo médio de redistribuicéo
no cluster em milissegundos

(Adicionar)
15000
10000
5000
s o= I
12 2a 32 4a

Variagdo Variagdo Variagdo Variagao
H Node 1 Node 2 Node 3

Figura 37 - Tempo médio de redistribuicdo no
cluster em milissegundos (Adicionar)

Tempo medio de redistribuicéo
no cluster em milissegundos
(Remover)

150000
100000
50000 I
O —
1a 23 36\ 4a
Variacdo Variacdo Variagdo Variacdo

m Node 1 Node 2 Node 3

Figura 38 - Tempo médio de redistribuicdo no
cluster em milissegundos (Remover)

A diferenca entre de desempenho entre o
adicionar ou remover um membro do
cluster deve-se ao processo de remover um
membro do cluster ser mais eficiente. Neste
processo sabemos o identificador do Node
que saiu 0 que permite que seja calculado
de forma eficiente quais channels devem
ser movidos, adicionalmente, numa
redistribuicdo ao adicionar um membro é
necessario notificar o membro do cluster
previamente responsavel de que ndo tem
mais interesse nos channels a que estes
pertenciam, este passo ndo acontece quando
um membro é removido. O tempo de ajuste
destas variagOes vai subindo de acordo com
0 numero de channels ativos no cluster,
sendo que quando observamos o salto da
segunda para a terceira variagdo do teste o
tempo de ajuste sobe consideravelmente,
inclusive ndo foi possivel realizar a quarta

97

variagdo do teste devido ao tempo que o
cluster fica em ajustes. Apos analisar 0s 0
que leva a este consideravel aumento, foi
identificado que o atraso se deve a forma
como a movimentagdo dos channels e das
conexdes gRPC para 0s novos responsaveis
é realizada. Este processo é feito de forma
individual, ou seja, um channel de cada vez.
Este processo foi melhorado drasticamente,
agrupando todos as alteragbes a serem
realizadas por membro num conjunto e
enviar somente uma mensagem por cada
conjunto de operacgdes, adicionalmente,
este processo foi também paralelizado. Esta
alteracdo resultou nos resultados
apresentados da quarta variacao.

Quanto ao tempo que leva a adicionar ou
remover um Node ao cluster ¢é de
aproximadamente 16ms, para a detecdo de
falha do tempo é entre 120 a 500ms. De
forma a obter os 16ms, foi registado o
tempo em que o Node descobre os
enderecos dos outros membros e o0 tempo
em que este se juntou a pelo menos um dos
membros do cluster. Para o tempo de
detecdo de falha foi comparado o tempo em
que o Node foi terminado com o tempo que
um dos Nodes detetou a falha, os intervalos
entres estes dois tempos foram muito
variados sendo os valores mais comuns
entre 120 a 500ms.

Quanto as fases de teste com trafego real,
ndo foi possivel obter todos os resultados
antes da producdo deste documento. Visto
que o projeto ainda se encontra na segunda
fase de testes, as andlises de resultados séo
bastante limitadas.

Nas primeiras duas fases de testes com
trafego real, foi observado que o numero de
sessoes em simultéaneo era
consideravelmente inferior ao esperado, no
entanto, é possivel verificar que o nimero
de sessfes € distribuido ao longo do dia,
com picos relativamente pequenos.

Na figura 39 podemos observar a
distribuicéo de sessdes ao longo do dia, esta
visualizacdo acumula as sessdes dos tenants
em fase de teste.

SessOes por hora

15000

10000
5000 W

0

O O O O O O ©O O O o o o
O N < W0 O N < © 0 O N
Y = = = = N N

e SessOes por hora

Figura 39 - Distribuicao de sessbes por hora

Na figura 40, temos a representacdo da
duracdo média de sessdo a cada hora do dia.
Assim como pode ser observado as
duragdes das sessGes sao relativamente
baixas, sendo assim com o apresentado as
16 horas na mesma figura.

Média de duracdo de sessdo
por hora em segundos

500

>

N

0:00
2:00
4:00
6:00
8:00
10:00
12:00
14:00
16:00
18:00
20:00
22:00

e |\|édia de duracéo de sessdo por hora em
segundos

Figura 40 - Média de duracéo de sessdo por hora

Até ao momento de que este documento foi
desenvolvido, ja foram em enviadas 12 706
780 mensagens e recebidas 12 706 690
mensagens, com um total de 173 977
sessdes estabelecidas com 2802 sessOes
diarias em média, e com soma de duracdo
destas de 23 757 458 segundos ou
aproximadamente 6600 horas e duracéo
média de 2 minutos.

V. Conclusao

Em conclusdo, o novo sistema distribuido
apresenta uma solugdo satisfatoria para os
problemas encontrados no sistema antigo,
com melhorias significativas na
escalabilidade, na toleréncia a falhas e na
monitorizacdo. Adicionalmente, todas as
funcionalidades do antigo sistema foram

98

mantidas enquanto novas foram
adicionadas, permitindo também adicionar
futuras funcionalidades gracas a sua
arquitetura. Embora algumas
funcionalidades, como Streams e push
notifications, ainda ndo estejam completas,
foram identificadas oportunidades para
melhorias futuras.

O novo sistema atingiu todos os objetivos
estabelecidos, incluindo escalabilidade
horizontal, comunicacdo bidirecional entre
cliente e servidor, comunicacgéo utilizando
Pub/Sub em tdpicos, restricdo de acesso a
topicos, suporte para mdultiplos tenants,
criacdo explicita de topicos, rastreamento
de presenca de clientes em cada topico e
armazenamento de mensagens enviadas em
cada tdpico.

Os préximos passos para 0 sistema sdo
planear o escalamento global e o routing
inteligente, tendo em conta a laténcia entre
o servidor e o cliente, garantindo que o
sistema possa lidar comum nimero maior
de utilizadores e volume maior de dados.

V1. VI. Referéncias

[1] Fette, I., & Melnikov, A. (2011). The

WebSocket Protocol. RFC.

https://doi.org/10.17487/rfc6455https://
datatracker.ietf.org/doc/html/rfc6455

[2] Roome, W., & Yang, Y. R. (2020,

novembro 1). Application-Layer Traffic

Optimization (ALTO) Incremental
Updates Using Server-Sent Events
(SSE). IETF. https://www.rfc-
editor.org/rfc/rfc8895.html

[3] Thomson, M., & Damaggio, E. (2016,
dezembro 1). Generic Event Delivery

Using HTTP Push. https://www.rfc-
editor.org/rfc/rfc8030

[4] Centrifugo. (s.d.). Scalable real-time

messaging server in a language-
agnostic way. Recuperado a 13 de
janeiro de 2023, de
https://centrifugal.dev/

[5] Mercure. (s.d.). Recuperado a 13 de
janeiro de 2023, de
https://mercure.rocks/

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Phoenix Framework. (s.d.). Recuperado
a 13 de janeiro de 2023, de
https://www.phoenixframework.org/
Octavo Labs AG. (s.d.). AMQTT
broker that is scalable, enterprise
ready, and open source. VerneMQ.
Recuperado a 13 de janeiro de 2023, de
https://vernemq.com/

HiveMQ (s.d.). Enterprise ready MQTT
to move your loT data. HiveMQ.
Recuperado a 13 de janeiro de 2023, de
https://www.hivemq.com/

Emitter (s.d.) Scalable Real-Time
Communication Across Devices.
Emitter.io. Recuperado a 13 de janeiro
de 2023, de https://emitter.io/

EMQ Technologies Inc. (s.d.). EMQ X -
MQTT Messaging Broker for loT.
EMQ. Recuperado a 13 de janeiro de
2023, de https://www.emgx.io/.
SocketCluster. (s.d.) SocketCluster -
Highly scalable pub/sub and RPC
toolkit optimized for async/await.
Socketcluster.io. Recuperado em 13 de
janeiro de 2023, de
https://socketcluster.io/

Soketi. (s.d.). Recuperado a 13 de
janeiro de 2023, de https://soketi.app/
Microsoft. (s.d.). Real-time ASP.NET
with SignalR | .NET. Recuperado em 20
de junho de 2023, de
https://dotnet.microsoft.com/apps/aspne
t/signalr

Ably. (s.d.). The platform to power
synchronized digital experiences in
realtime. Ably Realtime. Recuperado a
13 de janeiro de 2023, de
https://ably.com/

PubNub Inc. (2022, julho 14). Real-time
in-app chat and Communication
Platform. PubNub. Recuperado a 13 de
janeiro de 2023, de
https://www.pubnub.com/

Pusher Ltd. (s.d.). Powering realtime
experiences for mobile and web, Leader
in Realtime Technologies. Pusher
Recuperado a 13 de janeiro de 2023, de
https://pusher.com/

Fanout. (s.d.). Fanout | Powering
Streaming APIs. Fanout Recuperado a

99

[18]

[19]

13 de janeiro de 2023, de
https://fanout.io/

The Go Programming Language. (s.d.).
Golang.org. Recuperado a 13 de janeiro
de 2023, de https://golang.org/

Demers, A., Greene, D., Hauser, C.,
Irish, W., Larson, J., Shenker, S.,
Sturgis, H., Swinehart, D., & Terry, D.
(1987). Epidemic algorithms for
replicated database maintenance. In
Proceedings of the 6th Annual ACM
Symposium on Principles of Distributed

[20]

Computing (PODC '87) (pp. 1-12).
Association for Computing Machinery.
https://doi.org/10.1145/41840.41841
Das, I., Gupta, I., & Motivala, A.
(2002). SWIM: scalable weakly-
consistent infection-style process group
membership protocol. In Proceedings
International Conference on Dependable
Systems and Networks (pp. 303-312).
Washington, DC, USA. doi:
10.1109/DSN.2002.1028914.

100

BIBLIOGRAFIA

Redis Labs. (s.d.). Redis. Recuperado a 13 de janeiro de 2023 de https://redis.io/

Fette, I., & Melnikov, A. (2011). The WebSocket Protocol. RFC.
https://doi.org/10.17487/rfc6455

Roome, W., & Yang, Y. R. (2020, novembro 1). Application-Layer Traffic Optimization
(ALTO) Incremental Updates Using Server-Sent Events (SSE). IETF. https://www.rfc-
editor.org/rfc/rfc8895.html

Thomson, M., & Damaggio, E. (2016, dezembro 1). Generic Event Delivery Using HTTP
Push. https://www.rfc-editor.org/rfc/rfc8030

Centrifugo. (s.d.). Scalable real-time messaging server in a language-agnostic way.
Recuperado a 13 de janeiro de 2023, de https://centrifugal.dev/

Mercure. (s.d.). Recuperado a 13 de janeiro de 2023, de https://mercure.rocks/

Phoenix Framework. (s.d.). Recuperado a 13 de janeiro de 2023, de
https://www.phoenixframework.org/

Octavo Labs AG. (s.d.). A MQTT broker that is scalable, enterprise ready, and open source.
VerneMQ. Recuperado a 13 de janeiro de 2023, de https://vernemg.com/

HiveMQ (s.d.) Enterprise ready MQTT to move your loT data. HiveMQ. Recuperado a 13 de
janeiro de 2023, de https://www.hivemqg.com/

Emitter (s.d.) Scalable Real-Time Communication Across Devices. Emitter.io. Recuperado a
13 de janeiro de 2023, de https://emitter.io/

EMQ Technologies Inc. (s.d.). EMQ X - MQTT Messaging Broker for 10T. EMQ.
Recuperado a 13 de janeiro de 2023, de https://www.emgx.io/.

SocketCluster. (s.d.) SocketCluster - Highly scalable pub/sub and RPC toolkit optimized for
async/await. Socketcluster.io. Recuperado em 13 de janeiro de 2023, de
https://socketcluster.io/

Soketi. (s.d.). Recuperado a 13 de janeiro de 2023, de https://soketi.app/

Microsoft. (s.d.). Real-time ASP.NET with SignalR | .NET. Recuperado em 20 de junho de
2023, de https://dotnet.microsoft.com/apps/aspnet/signalr

Ably. (s.d.). The platform to power synchronized digital experiences in realtime. Ably
Realtime. Recuperado a 13 de janeiro de 2023, de https://ably.com/

PubNub Inc. (2022, julho 14). Real-time in-app chat and Communication Platform. PubNub.
Recuperado a 13 de janeiro de 2023, de https://www.pubnub.com/

101

Pusher Ltd. (s.d.). Powering realtime experiences for mobile and web. Leader in Realtime
Technologies. Pusher. Recuperado a 13 de janeiro de 2023, de https://pusher.com/

Fanout. (s.d.). Fanout | Powering Streaming APIs. Fanout Recuperado a 13 de janeiro de
2023, de https://fanout.io/

The Go Programming Language. (s.d.). Golang.org. Recuperado a 13 de janeiro de 2023, de
https://golang.org/

NATS.io. (s.d.). Recuperado a 13 de janeiro de 2023, de https://nats.io/

Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart,
D., & Terry, D. (1987). Epidemic algorithms for replicated database maintenance. In
Proceedings of the 6th Annual ACM Symposium on Principles of Distributed
Computing (PODC '87) (pp. 1-12). Association for Computing Machinery.
https://doi.org/10.1145/41840.41841

Das, I., Gupta, I., & Motivala, A. (2002). SWIM: scalable weakly-consistent infection-style
process group membership protocol. In Proceedings International Conference on
Dependable Systems and Networks (pp. 303-312). Washington, DC, USA. doi:
10.1109/DSN.2002.1028914.

Google Developers. (2019). Protocol Buffers. Recuperado a 13 de janeiro de 2023, de
https://developers.google.com/protocol-buffers

Bryan, P. C., & Nottingham, M. (2013, abril 1). JavaScript Object Notation (JSON) Patch.
IETF. https://datatracker.ietf.org/doc/html/rfc6902

102

APENDICE A

gRPC

O gRPC é um framework de comunicacdo remota de alta performance desenvolvido pela
Google. Este permite que aplicativos clientes e servidores troquem dados entre si de maneira
rapida, confiavel e eficiente, utilizando protocolos de comunicacdo padronizados e uma
interface de programacéo simples e facil de utilizar. O gRPC é baseado no protocolo HTTP/2,
0 que significa que este suporta funcionalidades avancadas, como streaming bidirecional e
unidirecional, compressdo de dados e multiplexacdo de chamadas. Este € frequentemente
utilizado em sistemas distribuidos e em arquiteturas baseadas em microservicos para facilitar
a comunicacdo entre diferentes componentes do sistema. Utilizando as ferramentas existentes
no framework é possivel gerar implementacGes de servidor e cliente para varias linguagens de
programacéo, reduzindo o tempo de desenvolvimento e facilitando a manutengdo dos

servidores e clientes.

APENDICE B

AWS ECS

O Amazon Elastic Container Service (ECS) consiste num servico de gestdo de containers
fornecido pela Amazon Web Services (AWS) que permite aos utilizadores executar e
dimensionar aplicativos em containers. O ECS é integrado com outros servigos da AWS, como
0 Amazon Elastic Compute Cloud (EC2) e o Amazon Elastic Load Balancing (ELB), para
permitir a gestdo de containers em grande escala e distribuir o trafego entre estes. Portanto, as
principais funcionalidades deste servigo séo:

e Gestdo de Docker containers;

e Monitorizacdo de containers;

e Integracdo com outras servicos AWS;

e Escalamento automatico;

e Distribuicdo de carga;

e Flexibilidade de implementacao;

e Inclui a mesma seguranca que a AWS oferece nos seus servicos como AWS

Identity, Access Management (IAM) e Amazon Virtual Private Cloud (VPC).

103

APENDICE C

AWS Cloudwatch

O Amazon CloudWatch é um servigo de monitorizacdo e analise de logs fornecido pela
Amazon Web Services (AWS) que permite monitorizar recursos e aplicagdes em tempo real.
Com o CloudWatch, os utilizadores podem coletar e rastrear métricas, coletar e monitorar logs,
definir alarmes e automatizar a¢cbes com base em eventos. Este servico € amplamente utilizado
de forma a monitorar a satde de aplicativos, identificar e resolver problemas de desempenho e

otimizar o uso de recursos na AWS.

APENDICE D

AWS X-Ray

O AWS X-Ray é um servico de rastreamento de transacGes fornecido pela Amazon Web
Services (AWS) que permite aos utilizadores analisar e depurar aplicativos distribuidos.
Utilizando o X-Ray, os utilizadores podem rastrear o fluxo de solicitacbes através de seus
aplicativos e identificar pontos de baixo desempenho ou falhas de desempenho em sistemas
complexos. Este servico fornece uma visdo abrangente do desempenho dos aplicativos,
permitindo que os utilizadores identifiguem e resolvam problemas de desempenho. De forma
coletar as transaces € utilizado o OpenTelemetry. Este é um projeto de c6digo aberto que tem
como objetivo fornecer uma maneira padréo e flexivel de instrumentar aplicativos para coletar

dados de telemetria, como rastreamento, métricas e logs.

APENDICE E
Typescript

TypeScript € uma linguagem de programagéo de codigo aberto desenvolvida pela Microsoft
que adiciona recursos opcionais de tipagem estatica ao JavaScript. Este é projetado para ser
um superset do JavaScript, o que significa que todo o codigo JavaScript é valido em TypeScript
e 0s seus utilizadores podem gradualmente adicionar recursos de tipagem estatica para obter

mais seguranca e facilidade de manutencgdo nos seus projetos.

104

o "°‘r
‘.’5.5"’ Cluster Stats
AS
ILE)
Hub Stats

APENDICE F

Figura 41- Pagina inicial do dashboard

Active Nodes Actine Hubs
2 4

250705 Sent Bytes Sent
233603 379.9kB
Messages Sent Bytes Sent
1331 3624818

Cannecled Sessions

Connected Sesaicns

Messages Recewed
233033

Messagqes Recerved
13

Active Channels

7

Fonte: Prépria

Active Channels

Bytes Recelved
23248

Sytes Received

13328

105

Figura 42- Pagina de topografia do dashboard, parte 1

Nodes

v.e.1

Fonte: Propria

106

Figura 43- Pagina de topografia do dashboard, parte 2

jas] Hubs

AS

e

Fonte: Prépria

Figura 44- Pagina de topografia parte 2 ampliada

prodyct example_product_id
productexample_ 0L /

‘ : \ docicanyas
pxample_huf \
\ j

= notfication:{est

| Origin L
N ! uic
nappsmobileapplestd—d o canyvas
- ','
\ P

:)lod\l(‘l‘U_\(‘un;)k-_‘-::-'u;
prc-ju;t,examp'le two N =
5 ;—::rn‘i-.ic'(':m'n;)le.-,05

Fonte: Prépria

107

Figura 45- Pagina de topografia do dashboard, parte 3

Nodes and Hubs

Fonte: Prépria

108

Figura 46 - P4gina de topografia parte 3 ampliada

ip- |u-west-
3 SN TTer .’ﬁm

l Hubs

nappsmohileappteste |
-0~ . .
Sess0ns] [Channels]
docicanvas
Sessions Sessions
dtsna cgevbiZ0anthe59d1ssy cgevit305hihes89d1ssg

Fonte: Prépria

109

Figura 47- Pagina de métricas do dashboard, channels ativos
@ Hub Stats ..ue Wooan 8N
AS Active Channels
, /I\

2dh ek

F

I s
ETTTI IR TR0

SOOI M0

Fonte: Prépria

Figura 48- Pagina de métricas do dashboard, sessdes ativas

Active Sessions

I | '

LU

A

[IALE

Fonte: Propria

110

Figura 49- Pagina de métricas do dashboard, hubs ativos

oo %
A8 Active Hubs

AS | '.

Fonte: Prépria

Figura 50 - P4gina de métricas do dashboard, mensagens enviadas comparadas com mensagens recebidas

Total Msgs Sent/Ruceived

LT
MJML’”" M@M V‘“f“m M_'M UM M.u M’l .Lum.l.tl

Fonte: Prdpria

111

Figura 51- Pagina de métricas do dashboard, bytes enviados comparados com bytes recebidos

Total Bytus Sent/Received

| |

i
{4 ‘
) W A WL N

Fonte: Prépria

%

MMJML

Figura 52- Pagina de métricas do dashboard, sessdes por dia

Sessions per day

Fonte: Prdpria

112

Figura 53- Pagina de métricas do dashboard, média de duragéo de sessdo por dia

Avg session duration

Fonte: Prépria

Figura 54 - Pagina de teste de sesséo

Session details

Carmection Infu Secshan o Auth Batra

Chasnel Authorizetions

Connection History

Wraws Lagumin e [EYe] Astvarck o

Fonte: Propria

113

Session details

Connaction Info

User

Connection History

Time

2138480

2138682

2138684

21398578

201376878

2038827

2r13ae8at

201335087

20136537

ANnaNE A

onnected. true

Type

Connection

Connection

Sessioninfo

Subucribe

Join

Prasence

OocumemGet

Qocumentinfo

Sutecribe

Figura 55 - Pagina de teste de sessdo, detalhes de sesséo

leealondl: ~

AT Thse, Defauitmeit

fotse)
gt Ninstispary”

ymma s

Authesticates; false

Fonte: Prépria

FreETLATaa0ars", MBSLimAdayusal; trae,

Figura 56- Pagina de teste de sesséo, histdrico de conexdo

Details
Connecting..
Connectian open

> iNarie, ETtaaly PR RN AT,
» {angiee 3,

CreLEr Arraxcl))

B (Crsveni: “gecizmmws®, Ersssvivei Arvay(l))

B JINSRELT TINCI DALY, PRRSEecel] AvRy(L))

» (4e420; 2, Ducument; “w rre
B {Iresest: “Soriiaves®, weryiael ser)

» (heqis: 3,

© Phavtiy & e gt Pamrr et -

Swream Enqueue RPC

Fonte: Prépria

MBI Es STYY, WLl s et

Pubdish

rw,

Authenticate

Pefoutthadits

=

114

Figura 57 - Pagina de teste de sessdo, historico de channel

Channels

doccaman u

Channel type: Document
Presence Info

SessionlD UseriD User info

cogmihadag M Ino3Spgarg Lisay

Channel Document

¥ (slasentes QOfect

Fonte: Prépria

APENDICE G

package protocol;
import "google/protobuf/timestamp.proto";
enum EventType {

Publish = #;
Ack = #;
Subscribe = #;

}
/**

Default response message
*/

message Response

/**
Request id for reqg/res matching
*/
int64 RegID = 1 [json name = "reqID"];

/**

115

If change went ok
*/

bool Success = 2 [json name = "success"];

/**
On publishes you may algo get the created message ID
*/

optional string MsgID = 3 [Json name = "msgID"];
}
/**
Response for ChannelPubRequest
*/
message ChannelPubResponse {
repeated Response Published = 1 [Jjson name = "published"];
}
/**
Request to batch publish
*/
message ChannelPubRequest {
/**
List of publishes to make
*/
repeated PubRequestInfo Publishes = 1 [json name = "publishes"];
}
/**
Publish request information
*/
message PubRequestInfo {
/**
Publish target channel
*/
string Channel = 1 [json name = "channel"];
/**
Publish event name (user defined)
*/
string Event = 2 [json name = "event"];
/**
Publish payload
*/
bytes Payload = 3 [Jjson name = "payload"];
/**
Extra features to apply
*/
optional ChannelPubExtras Extra = 4 [json name = "extra"];
/**
Request 1d for req/res matching
*/
optional int64 RegID = 5 [json name = "reqID"];
}
/**

116

Extra possible feature, will only work if channel supports it
*/

message ChannelPubExtras {

/**
If publish should be stored
*/
bool store = 1 [json name = "store"];
/**
If publish should trigger a push notification
*/
bool push = 2 [json name = "push"];
/**
If publish should be retained
*/
bool retain = 3 [Jjson name = "retain"];
}
/**
Request to batch subscribe
*/
message SubscribeRequest {
/**
Request i1d for req/res matching
*/
int64 RegID = 1 [Jjson name = "reqID"];
/**
List of channels to subscribe
*/
repeated ChannelSubscribeInfo Channels = 2 [json name = "channels"];
}
/**
Response for SubscribeRequest
*/
message SubscribeResponse {
/**
Request 1d for req/res matching
*/
int64 RegID = 1 [Jjson name = "reqID"];
/**
List of channels that subscribe worked
*/
repeated string SubscribedChannels = 2 [Jjson name =

"subscribedChannels"];

}
/**

Channel to be subscribed and last client known timestamp for message
recover

*/
message ChannelSubscribeInfo {
string Channel = 1 [json name = "channel"];

117

optional int64 Timestamp = 2 [Jjson name = "timestamp"];

}

/**
Request to batch unsubscribe
*/
message UnsubscribeRequest ({
/**
Request i1d for req/res matching
*/
int64 RegID = 1 [Json name = "reqID"];
/**
List of channels to unsubscribe from
*/
repeated string Channels = 2 [json name = "channels"];
}
/**

Wrapper for every single message, it defines it's purpose and with
payload if available
*/
message Envelope {
/**
The reason for the message
*/

EventType Event = 1 [Jjson name = "event"];

/**

The payload associated with the message if available

*/

bytes Payload = 2 [Json name = "payload"];
}
/**
Message for a channel publish
*/
message ChannelPublish {
/**
Target channel
*/
string Channel = 1 [json name = "channel"];
/**
Event of the publish (user defined)
*/
string Event = 2 [json name = "event"];
/**
Payload of the publish
*/
bytes Payload = 3 [Json name = "payload"];
/**
Generated msglD
*/
string MsgID = 4 [json name = "msgID"];

118

/**
Timestamp of the publish

*/
int64 Timestamp = 5 [Json name = "ts"];
/**
Node generated sequence
*/
optional string ChannelSerial = 6 [Jjson name = "channelSerial"];

APENDICE H

119

Analise e Especificacao de
Requisitos

AppSockets

Versao 1.1
Preparada por Tiago Lima

17/05/2023

120

Indice

1.

INEFOAUGEAD ...ttt 123
11 ODJBEIVOS. ...tttk b et e et b et n e 123
1.2 PUblico-Alvo e SugestBes de LEItUFA........ccceiiiiiiiiiieieecees e 123
1.3 AMDItO 00 PrOJELO ...voiveeceeeeeeeeee ettt sttt 124
14 GIOSSANTO ...ttt e bbbkt 125
15 RETEIBINCIAS ...ttt r s 126
1.6 Organizagdo deste DOCUMENTOcccoiiiiiiiiiieieieiee e 126

DESCIIGAOD GEIAL ...t 126
2.1 Classes de ULHZAUOIESc..cviiiiiirieiie e 126
2.2 Funcionalidades do ProdUucceiiiiiiiicie s 128
2.3 F N a gl o] (= o o0 [@] o 1=T - Tor- o H OSSPSR 129
24 BIOKET ..o s 129
25 AGIMHN Lttt b ettt ettt et 130
2.6 CHUSTET <.t bbb b ettt b 130
2.7 ENGINE b 130
2.8 HUD L ottt ettt 130
2.9 CRANNELL.....e bbb 131
2.10 CONNECHION. ...ttt bbbt b b b 131
220 5 N T 11 S SSR 131
2.02 SO i bbb e bR bbb bbbt bt 131
203 AULN bbb 131
N] (o] = To TP T TSP PP PP PRUPTRTO 132
215 DBIUG .ottt 132
N T B TETol0 1 V.- SO OOP USRS 132
2.17 Restrigdes de Desenho e IMpIementacaoccoereiriiiiiieneneeeeese s 132
2.18 Documentagdo para 0S UtHHZAdOIeS. . ..ot s 133
2.19 Pressupostos € DEPENUENCIAS.........cccviiiiieii ettt ns 133

Requisitos das Interfaces EXTEINAS.........cccouuiiieiiiiiiiiessee e 134
3.1 INterfaces de ULIHZAGONcooveiiiecce e 134
3.2 INterfaces de HAardWANEcc.oviiiiiii s 134
3.3 Interfaces de Software e de COMUNICAGADccveeieiiiiiriie e 134

Requisitos FUNCIONAIS A0 SISTEMAL.........ccciiiiiiieiie et 135
4.1 Vista Geral dos Requisitos FuNcionais do S.1. ... 135
4.2 Os Requisitos Funcionais para AUtENTICAGAD...........cocuriririreieieeees e 138
4.3 Os Requisitos Funcionais para “Clente”cccoocoviiiiiniinncne e 140

4.4 Os Requisitos Funcionais para “Administrador”...............c..ccccccviiiniiini e, 147

4.5 Os Requisitos Funcionais para “Servigo”............c.ccooiiiiininiiine e 156
5. RequISItoS NAO-FUNCIONGIS.........ccciiveiiiieiireiesie e ste et stesae e sae e sreenaeanaesre s 162
51 Requisitos de PErfOrMaNCEccoii it st s 162
5.2 REQUISITOS 08 PrOTECEDeveveeiicieeieeie sttt 162
5.3 REQUISITOS 08 SEQUIANGAeviveiieiieiietiiiesi ettt 162
5.4 Requisitos Nao-Funcionais das Regras de NegOCiocccvvvieviieeiie e, 163
6. OULIOS REOUISITOS. .. cveetiiiieiiieie et ste e te e st ste et teesteasaesnaesaeenaesreeteeneenres 163
7. Lista de Itens a Elaborar na Fase de DeSenhoccccevveieieiiiinc i 163
8. Continuidade do Processo de DesenvolVImMENTOccocceveieieniiene s 164

122

Lista de Tabelas do SRS

Tabela 1 - Lista de stakeholders previstos para 0 APPSOCKELS........cccvvrererereninieieieeens 126
Tabela 2 - Lista de Niveis de Acesso e Perfis previstos para 0 AppSockets...........ccccvenenne. 126
Tabela 3 - Divisdo modular proposta para 0 S.1.cceoeiiiiiiiiiiece e 127

Historico de Revisoes

Nome Data Motivo da Revisédo Verséo
Tiago Lima 2023-04 | Documento Inicial 1.0
Tiago Lima 2023-05 | Atualizacdes de requisitos funcionais 1.1

1. Introducéo

1.1 Objetivos

O projeto AppSockets tem como objetivo servir de infraestrutura para o envio de informacdo em soft
real-time entre clientes e servidores, e a0 mesmo tempo substituir um sistema com objetivos similares,
mantendo o maximo de compatibilidade possivel de forma a facilitar a migragdo para 0 novo um
sistema.

NAPPS é uma empresa SaaS (software como servigos) B2B (de empresa para empresa) com o proposito
de construir a melhor experiéncia para os seus clientes e utilizadores, assim sendo, a empresa lida
maioritariamente com aplicagdes moveis em contexto de e-commerce, e neste contexto surgiu uma
necessidade de comunicar com as aplica¢fes de forma quase instantdnea sempre que a aplicacao esteja
em execucao.

Para esse propdsito, é necessario criar infraestrutura para o envio de informac&o em tempo real de forma
bidirecional entre cliente e servidores. A infraestrutura ndo sera exclusiva as aplicacdes moveis,
tornando possivel a sua utilizagéo por outros servi¢os que possam necessitar de comunicagdo em tempo
real.

1.2 Publico-Alvo e Sugestdes de Leitura

Este documento tem como principais destinatérios os elementos da equipa de desenvolvimento e gestéo
de projeto, adicionalmente, também podera ser utilizado pelo conjunto de utilizadores que pretendam
contribuir e/ou maximizar a sua experiéncia enquanto potenciais stakeholders. Este documento podera
ainda ser distribuido por todos os outros stakeholders associados ao projeto.

Este SRS apresenta uma descri¢do detalhada do projeto AppSockets, bem como a descri¢cdo das
caracteristicas e de todo o conjunto de requisitos funcionais e ndo-funcionais acordados.

123

1.3 Ambito do Projeto

O projeto AppSockets permitird substituir um sistema interno existente enquanto adiciona novas
funcionalidades. Sendo que ja existe um projeto interno em producdo com esta responsabilidade é
necessario manter compatibilidade com o seu funcionamento, enquanto novas funcionalidades séo
adicionadas, e problemas existentes com o projeto interno sdo corrigidos. Os principais problemas a ter
em conta s&o:

e Nao ser escalavel,
e Exige muita configuracao;

Portanto, este projeto tem como objetivos:

Ser capaz de substituir o projeto atual em producéo
Adicionar funcionalidades além do projeto existente
Ser extensivel para novos casos de uso

Reduzir as configuracfes necessarias para sua utilizagdo
Fornecer API para servicos internos

Fornecer API para aplicacGes clientes

124

1.4 Glossario

Termo

Definicéo

Especificacdo de Requisitos

Documento que descreve todas as fungdes do sistema proposto, bem como os
requisitos ndo-funcionais e restricdes sob as quais deve operar.

Stakeholder

Qualquer entidade com interesse direto ou indireto neste projeto

Utilizador

Cliente que utilize as funcionalidades implementadas via API

API

API (de Application Programming Interface) é um conjunto de rotinas e
padrdes estabelecidos por um software para a utilizacéo das suas
funcionalidades por aplicativos que ndo pretendem envolver-se em detalhes
da implementacdo das mesmas, mas apenas usar 0s Seus Servigos.

SRS

SRS (de Software Requirements Specification) é a traducéo de Relatorio de
Entrega de Requisitos

Deliverable

Termo utilizado em gestéo de projetos para descrever um produto ou servi¢o
produzido e entregue ao cliente no contexto do desenvolvimento do projeto

loT

10T é uma rede de dispositivos conectados a Internet que coletam e
compartilham dados, permitindo a automagéo de processos e tomadas de
decisdo baseadas em dados. Os dispositivos 10T usam tecnologias de rede
sem fio e podem ser usados em varias areas, como saude, transporte e
industria.

PubSub

Publish and Subscribe, um modelo de comunicagéo em que os participantes
se comunicam por meio de mensagens transmitidas por um intermedidrio
(broker). Neste modelo, os participantes sdo divididos em duas categorias:
publishers e subscribers. Publishers sdo responsaveis por enviar mensagens
para o intermediario, enquanto subscribers se inscrevem em determinados
topicos de interesse. Quando um publisher envia uma mensagem, o
intermediério envia a mensagem para todos 0s subscribers que estéo inscritos
no tépico relevante. Este modelo é muito utilizado em sistemas distribuidos
para comunicagdo assincrona e escalavel entre diferentes partes do sistema,
permitindo a comunicag&o eficiente entre muitos participantes sem a
necessidade de cada participante saber com quem esta se comunicando. O
pub/sub é amplamente utilizado em aplica¢des de 10T (Internet das Coisas),
sistemas de mensagens e sistemas de eventos, permitindo que os participantes
se comuniquem de forma eficiente e escalavel. Ao longo deste documento o
nome PubSub ou Pub/Sub seré utilizado, tendo ambos 0 mesmo significado.

Subscriber

Um subscriber em PubSub é um componente que se inscreve em topicos para
receber mensagens publicadas por publishers, geralmente implementado
CcOmo um programa que se conecta a um broker de mensagens. Ao receber
uma mensagem, o subscriber pode executar uma a¢do ou armazenar a
mensagem para processamento posterior.

Publisher

Um Publisher em PubSub é um componente que publica mensagens em um
ou mais topicos. Ele geralmente é implementado como um programa ou
processo que se conecta a um broker de mensagens e envia as mensagens
para o topico correspondente. Ao publicar uma mensagem, o Publisher ndo
sabe quais subscribers, se houver algum, receber&o a mensagem. E
responsabilidade do broker encaminhar a mensagem para os subscribers
inscritos nos topicos relevantes. O processo de publicagdo de mensagens é
geralmente assincrono e permite que os Publishers continuem a enviar
mensagens sem serem afetados pelo processamento dos subscribers.

Broker

Um broker é um componente de software usado como intermediario na
comunicagdo entre sistemas ou aplicativos. Ele recebe mensagens de um
emissor e as encaminha para um ou mais recetores interessados em recebé-
las. Os beneficios do uso de um broker incluem redugéo de complexidade do
sistema, melhoria da escalabilidade e reducdo da sobrecarga de comunicacéo
direta entre sistemas.

Cluster

Um cluster € um conjunto de computadores interconectados que trabalham
juntos como um Unico sistema para realizar tarefas complexas. Os membros
do cluster distribuem a carga de trabalho entre si, permitindo que as tarefas
sejam realizadas mais rapidamente.

125

1.5 Referéncias

Existem outros documentos da NAPPS no &mbito deste projeto, que suportam a informagéo contida
neste plano, nomeadamente:

e Plano de Projeto

e Proposta Formal

e Cronograma
Este documento de especificacdo de requisitos foi desenvolvido de acordo com as regras vigentes e
padronizadas relativas a descri¢do de requisitos funcionais e ndo-funcionais.

1.6 Organizacao deste Documento

As proximas sec¢Oes tm como objetivo a visdo geral dos atores e perfis de acesso, das funcionalidades
do produto final e dos entregaveis a produzir no contexto do projeto.

2. Descricdo Geral

2.1 Classes de Utilizadores

O sistema AppSockets preveé a existéncia de [k] tipos de entidades (atores do sistema e stakeholders) e
[n] perfis de acesso distintos, ambos detalhados nas tabelas seguintes:

Ator/StakeHolder Descrigéo Perfil
Cliente Entidade para quem vai ser desenvolvida a aplicacéo Cliente
Programador Entidade com a funcéo de desenvolver a aplicacéo. Administrador
Utilizador Entidade com a fungéo de utilizar a aplicagao. Servico
Tester Entidade com a funcéo de testar a aplicagéo. Administrador

Tabela 4 - Lista de stakeholders previstos para o AppSockets

A tabela seguinte ilustra os tipos de entidades/perfis de acesso e respetivo nivel de privilégios, que
podem aceder ao sistema de informacdo AppSockets, de modo a utilizarem as funcionalidades
permitidas a cada nivel (descricdo detalhada nos casos de uso em sec¢do adiante deste SRS).

Perfil Descrigdo Nivel

Cliente O perfil de cliente consiste numa aplicagéo cliente que ird se conectar a aplicacéo, este ird pertencera Cliente
hub e terd as permisses que sejam dados pelo AuthProvider do hub. Esta entidade nunca tera
permissdes para manipular qualquer tipo de configuragéo na aplicagao.

Servigo Perfil de servigo consiste nas aplicagdes que irdo interagir com a aplicacdo por meios internos, ttm Service
acesso a quase todas funcionalidades disponiveis.
Administrador Perfil de administrador consiste em um utilizador interno com permissdo para manualmente alterar ~ Admin

configuracdes na aplicacéo, tendo acesso a todas funcionalidades.

Tabela 5 - Lista de Niveis de Acesso e Perfis previstos para o AppSockets

126

De forma a respeitar possiveis situagdes de excecdo relativamente as permissdes dos perfis propostos
na tabela 2, sugere-se a modularizacdo do sistema de S.l1. em grandes unidades orientadas a objetivos,
de maneira a poder gerir permissdes nao apenas ao nivel do perfil (tabela 2) mas também ao nivel do
utilizador individual. Sugere-se assim a seguinte divisao modular:

Modulo Descricao Acess
0
Moédulo 1 Conjunto de funcionalidades e informagéo para o Cliente Cliente
Moaodulo 2 Conjunto de funcionalidades e informacéo para o Servigo Service
Modulo 3 Conjunto de funcionalidades e informacéo para o Administrador Admin

Tabela 6 - Divisdo modular proposta para o S.I.

127

2.2 Funcionalidades do Produto

O projeto AppSockets a ser construido consiste numa aplicagdo multi-tenant e distribuida, que permite
a intercomunicacéo entre cliente e servigos em soft real-time.

Sendo uma aplicacdo multi-tenant, existe uma separagdo entre estes, sendo esta representada por hubs.
Cada hub tem as suas proprias sessGes dos clientes, 0s seus proprios channels e suas proprias
configuragdes. Cada hub, pode fornecer a sua prépria forma de autenticacéo através vez de um objeto
nomeado de AuthProvider, este objeto permite definir como o pedido de autenticacdo sera entregue
sendo as opcdes possiveis: NATS e HTTP, adicionalmente, podem ser configurados cabecalhos e rota
do pedido.

Utilizando o método PubSub os clientes e servicos serdo capazes de publicar eventos para outros
elementos interessados, organizando os eventos enviados por channels, equivalente a topicos.

Cada channel pode pertencer a Gnico tenant, permitindo nomes de channels iguais entre tenants. Este
tem as suas proprias configuracdes, que podem ser definidas por cada um, ou num grupo com o nome
de namespace, caso ndo exista em nenhum, o tenant que é representado por um hub na aplicacgdo tera
sempre uma configuracdo para aplicar caso mais nenhuma exista. De forma que um channel pertenca a
um namespace, este deve comegar com o nome do namespace e ter um separador (:”’) antes do nome
do channel, por exemplo, “namespace:channel”.

Além de permitir simplesmente PubSub, cada channel tem um conjunto de funcionalidades disponiveis,
sendo estas:

Retain Message;
Store Message;

Push Message;
Presence;

Public;

Client Publish;

Allow Anonymous;
Occupancy;

Channel Live History.

Além das funcionalidades, existem tipos de channels que podem suportar ou ndo as funcionalidades
previamente definidas, este tipo de channels consistem nos seguintes:

e Default;
e Document;
e Notification.

As funcionalidades previamente descritas, sdo modulares, de forma a permitir criar tipos de channels e
reutilizar as funcionalidades. Este tipo de channels sdo definidos atraves vez de prefixos no channels
por exemplo “doc:channel” e “notification:channel” e sendo o tipo Default, o ativo por defeito.

As sessdes que representam uma ligacdo de uma aplicacdo cliente, estas podem utilizar os protocolos
de comunicacdo WebSocket e SSE. Cada uma destas pode pertencer a somente um hub, e podem

128

subscrever ou publicar para qualquer channel dentro do hub desde que tenham permissdes para tal que
sdo definidas na resposta recebida ao realizar o pedido de autenticagdo definido pelo AuthProvider.

Por fim, de forma a permitir que servicos sejam capazes de comunicar com a aplicacao, existem duas
APIs sendo uma por NATS para servicos e outra por HTTP tanto para servi¢cos como administrador.

O capitulo 4 deste SRS é totalmente dedicado a descri¢do dos requisitos funcionais do AppSockets.

2.3 Ambiente de Operacéo

A aplicacdo sera planeada para ser executada na plataforma AWS Fargate ou ECS (Elastic Container
Service) e localmente em caso de desenvolvimento. Naturalmente sera utilizado a tecnologia Docker.

No ambiente da plataforma AWS, é necessario que todas as instancias estejam na mesma rede, ou
ligagdo entre estes, adicionalmente, tem que ser permitido trd&fego TCP e UDP e as seguintes portas
devem estar abertas: 80, 8080, 4040, 9999, 7946. Estas sdo as portas definidas por defeito.

Em ambiente local, cabe ao utilizar de fornecer um ambiente que suporte o funcionamento da aplicacgéo,
este pode ser feito através do software Docker, ou uma rede que autorize trafego TCP e UDP. Caso seja
somente necessario executar uma instancia o localhost devera funcionar normalmente.

Além de configuracdes de rede, existem configuracdes que devem estar presentes em conjunto com a
aplicagdo. Estas configuracdes adicionais sdo divididas nas seguintes categorias:

Broker;
Admin;
Cluster;
Engine;
Hub;
Session;
Channel;
Connection;
Redis;
SQL;
Auth;
Storage;
Debug;
Discovery.

Todas estas configuracdes devem estar presentes num ficheiro “config.yaml”, que deve ser criado pelo
elemento que deseja executar a aplicacéo.

As especificacBes das configuracdes serdo apresentadas nos seguintes topicos.

2.4 Broker

A categoria Broker define as propriedades necessérias para a aplicacao se conectar e
autenticar com um servidor NATS.

129

As propriedades da categoria Broker, utilizam como prefixo “broker” e existem as seguintes
propriedades:

“broker.host” - URL para o servidor NATS;
“broker.user” - Utilizador de autenticacéo;
“broker.password” - Password de autenticacao;

“broker.subject” - Prefixo para todos os subjects utilizados na aplicacao.
2.5 Admin

A categoria admin define como administradores sdo autenticados, nesta categoria existe
somente uma propriedade “admin.url” que aponta para o url onde o pedido de autenticagdo vai
ser enviado.

2.6 Cluster

Nesta categoria sdo definidas propriedades relativamente a seguranca de comunicacao entre
0s membros do cluster. Existem somente duas propriedades.

“cluster.membership.secretKey” - Chave partilhada entre todos os membros para iniciar uma
comunicagéo segura.

“cluster.rpc.secretKey” - Chave partilhada utilizada para realizar pedidos RPC.
2.7 Engine

Nesta categoria, sao definidas propriedades que afetam todos os utilizadores da aplicacdo. As
propriedades existentes sdo as seguintes:

“engine.sessionMetricsInterval” - Intervalo definido entre coleta 0 niUmero de sessdes.

“engine.allowDynamicHubs” - Se € permitido a criacdo dindmica de hubs sem antes ser
definido.

“engine.maxLiveHistorySize” - NUmero maximo de mensagens armazenada em live history.

“engine.statsCollectInterval” - Intervalo definido entre coleta de métricas gerais.
2.8 Hub

Na categoria hub, sdo definidas propriedades relativas a temporiza¢cbes do hubs, com as
propriedades “hub.closeTimeout”, onde é definido o intervalo de espera para fechar o hub
assim que ndo tenha nenhuma sessdo conectada. Por fim, existe a propriedade
“hub.authenticateRequestTimeout” que define o tempo maximo de espera para o pedido de
autenticacdo de uma sesséo.

130

2.9 Channel

Na categoria channel, sdo definidas propriedades relativamente ao channel, consistindo nas
seguintes propriedades.

“channel.historyPageSize” - NUmero de mensagens enviadas ao tentar recuperar mensagens,
ou seja, controla o numero maximo de paginacdo ao recuperar mensagens perdidas.

“channel.enableLiveHistory” - Se a funcionalidade Live History deve ser ativa ou néo.

“channel.retainMsgDuration” - Define durante quanto tempo uma retained message deve ser
armazenada.

2.10 Connection

Na categoria connection sdo definidas propriedades relativas aos tipos de conexoes,
nomeadamente SSE e WebSockets.

Para SSE existe somente a propriedade “connection.sse.msgBufferSize”, onde ¢ definido o
nimero maximo de mensagens em espera a serem enviadas para o cliente, mensagens
recebidas além quando este buffer esta no limite sdo ignoradas.

Para WebSockets existem trés propriedades, sendo “connection.ws.msgSendBufferSize” que
¢ equivalente a de SSE e “connection.ws.pinglnterval” e “connection.ws.pongInterval” onde
séo definidos os intervalos para 0 PING/PONG dos WebSockets de forma a garantir que a
conexdo de mantém aberta.

2.11 Redis

Assim como o nome da categoria indicada, aqui sdo definidas as propriedades para conectar a
aplicacdo Redis ou um cluster da aplicacdo Redis.

“redis.address” - URL para o servidor Redis.
“redis.username” - Username de autenticag&o;
“redis.password” - Password de autenticag&o;

“redis.db” - NUmero de base de dados a ser utilizada.

2.12 SQL

propriedades relativas as conexfes SQL em geral, com as seguintes propriedades.
“sql.idleConnections” - NUmero méaximo de conexdes paradas.
“sql.maxConnections” - NUmero maximo de conexdes permitida.
“sql.connectionMaxLifetime” - Duragdo maxima de uma conexao.

2.13 Auth

131

Nesta categoria sdo definidas propriedades para a criagdo de tokens pela aplicagdo, com a
seguintes propriedades.

“auth.algorithm” - Algoritmo de encriptacéo do token.
“auth.issuer” - Nome do criador do token;
“auth.session.secret” - Chave para encriptar e desencriptar tokens de sessdes;

“auth.admin.secret” - Chave para encriptar e desencriptar tokens de administradores;
2.14 Storage

Nesta categoria € definido o tipo de base de dados a ser utilizada, por agora somente a base
de dados PostgreSQL é suportada e com as seguintes propriedades.

“storage.postgres.host” - URL para o servidor ou proxy.
“storage.postgres.port” - Porta a ser utilizada.
“storage.sslMode” - Se SSL deve ser utilizada na ligagao.
“storage.user” - User para autenticacao.
“storage.password” - Password para autenticacao.

“storage.dbName” - Nome da base de dados a ser utilizada.

2.15 Debug

Nesta categoria sdo definidas apenas algumas propriedades para permitir o inspecionamento
da aplicagdo como “debug.pprof” se o pprof deve ser ativo, e “debug.level” para definir a
verbosidade dos logs da aplicacéo.

2.16 Discovery

Nesta categoria existe somente um proprieadade onde é definido como o descobrimento de
outros servidores deve ser realizada com a propriedade “discovery.type” que apenas suporta
“udp” e “aws_ecs”.

A aplicacdo WEB ser& desenvolvida com suporte de dados baseado em PostgreSQL e suporte
aplicacional baseado em Go. As APIs fornecidas por HTTP irdo utilizar como formato de comunicacéo
de informacédo o formato JSON, exceto nas APIs de conexdo continua onde sera utilizado o formato
Protobuf. A API fornecida pelo software NATS ird utilizar Protobuf como formato de comunicagéo de
informacéo.

2.17 Restricdes de Desenho e Implementacao

132

O sistema sera desenhado e implementado de modo a cumprir as recomendacdes de seguranga da horma
27001, garantindo assim, desde logo, os requisitos de privacidade, confidencialidade e protecdo de
dados pessoais e legais que devem ser assegurados em aplicaces deste tipo e area.

A comunicacdo com as API de interoperabilidade sera efetuada de forma totalmente encriptada, sendo
recomendado desde logo um acesso baseado em protocolo HTTPS.

2.18 Documentacéo para os Utilizadores

Estdo previstos dois tipos de manuais para os dois tipos de utilizadores definidos no contexto do
AppSockets: para a equipa técnica/informatica, que pode efetuar a manuten¢do aos produtos que vao
utilizar ou integrar com as APl do AppSockets, esta previsto um manual em formato digital com a lista
das funcionalidades e respetivo contexto de utilizacdo, para as funcdes da API.

Para os utilizadores da aplicacao, esta prevista a possibilidade de ligar/desligar os tutoriais da aplicacéo
de forma contextual (ajuda por funcionalidade ativa).

2.19 Pressupostos e Dependéncias
Esta projeto tem as seguintes dependéncias:

Existéncia de uma base de dados Postgres;

Rede de internet com permissdes para UDP e TCP e que todas instancias tenham ligagdes
entre estes;

Existéncia de um servidor ou cluster Redis;

Existéncia de um servidor ou cluster NATS;

Todas estas dependéncias externas devem estar acessiveis a todas as instancias da aplica¢do ao longo
do seu funcionamento.

A aplicacdo tem a capacidade de ser executada no sistema operativo Windows, MacOS e as
distribuicdes mais comuns de Linux, sendo o sistema operativo principal a distribuigdo de Linux
desenvolvido pela AWS.

Naturalmente, sendo este projeto para ser utilizado na plataforma AWS, espera-se que assim exista e
com acesso aos recursos: AWS Load Balancer, Target Groups, ECS, Cloud Watch e ferramentas
complementares destes.

133

3. Requisitos das Interfaces Externas

3.1 Interfaces de Utilizador

Uma vez que o sistema a desenvolver fornece somente APIs a serem utilizadas por outras aplicacdes,
nao estdo previstas interfaces visuais.

3.2 Interfaces de Hardware

Uma vez que o sistema a desenvolver assenta em frameworks padronizados e devidamente
estabelecidos, ndo estdo previstas ligacdes ou interfaces especiais ao hardware dos dispositivos.

3.3 Interfaces de Software e de Comunicacéo

Este projeto consiste numa aplicacdo que ira correr num servidor, sem uma interface visual para
utilizadores, no entanto, existe comunicagdo com outros servigos através do software NATS. Desta
forma, existem duas interfaces de software, sendo uma APl exposta por HTTP que espera pedidos em
JSON e responde da mesma forma, e uma API acessivel através do software NATS com o formato de
mensagens definidas em protocol buffers.

De lembrar, que toda comunicacdo com interfaces ndo estd assegurada com SSL providéncia pela
aplicagdo, mas sim espera-se que esta seja providéncia pelo software NATS e no caso de HTTP através
do servico AWS Load Balancer.

134

4. Requisitos Funcionais do Sistema

Esta secgéo descreve detalhadamente todos os requisitos funcionais do AppSockets e a enumeracao dos
requisitos ndo-funcionais que possam estar relacionados com a funcionalidade.

4.1 Vista Geral dos Requisitos Funcionais do S.I.

A figura seguinte ilustra as grandes funcionalidades do AppSockets para o perfil Cliente:

Identificador Visdo Geral Requisitos Funcionais AppSockets para Clientes

Sem autenticagdo ou autorizagio

! ’
F
' rd
+ s
F F
ri F
Il p # USRS N
I’ 4 Pid
rd
e P -
, -
’f' - - LGRS
' - - - -
- -

o . P Atualizar Veriificar
e e ==t <eusesas t Documento Autorizacio
F=~a

S
LR - -
~ " v " CTUSEE
RS Buscar
. R Documento
> LY CEUSeS >
h
hY ~)
Cliente -~ Marcar
cAIUSeErE notificagdo como
- lida
Descricéo O ator cliente acede a aplicagdo AppSockets

Requisitos ndo-funcionais | Ligacdo a Internet Ativa

135

A figura seguinte ilustra as grandes funcionalidades do AppSockets para o perfil Administrador:

Identificador Visdo Geral Requisitos Funcionais AppSockets para Administrador

Autenticagao

- ‘.1 .= =" k\
E : - e -
Py = ses oy Veriificar
T~ e] Gerir Channel - cxinCidesEe -
RS TR a - Autenticagdo
» “ - o - oy td
> . v LSS <<includess» 'JI
A - - -
AR Thea - "
AT ~ Gerir Metadata de - cinciudess
Administrador A Channel
Gerir Auth
Provder
Descrigdo O ator Administrador gere a aplicacdo AppSockets

Requisitos ndo-funcionais | Ligacdo a Internet Ativa

136

A figura seguinte ilustra as grandes funcionalidades do AppSockets para o perfil Servico:

Identificador Visdo Geral Requisitos Funcionais AppSockets para Servicos
Pré Autenticado
. - S,
- - x\

Gerir Channel
Rules

Pré-Autenticado

- CEUEESYY b o - Gerir Channel -— = axinciudesEe = .
Autenticagdo

Gerir Metadata de
Servigo Channel

Gerir Namespace

Gerir Auth
Provder

Descrigdo O ator servico acede a aplicacdo AppSockets

Requisitos ndo-funcionais | Ligacdo a Internet Ativa
Conexdo com o software NATS
Conexdo autenticada e autorizada no software NATS

137

4.2 Os Requisitos Funcionais para Autenticacéo

Com o objetivo de controlar o acesso e ac¢des do utilizador no contexto do AppSockets, estéo previstas
as seguintes funcionalidades:

4.2.1 Visdo Geral das Funcionalidades de Autenticacao

Identificador & Nome

Cliente:RF:01 — Conectar

Descricéo

Um utilizador conecta-se a aplicagdo e estabelece-se uma sessdo, de forma a poder
realizar outras operagoes.

Pré-Condigdes

Acesso a internet e dispositivo compativel.

Pds-Condigdes

Acesso aos recursos publicos da aplicacao.

Requisitos néo-
funcionais

Acesso a internet

138

4.2.2 Requisito Funcional “Autenticar”

Identificador & Nome

Cliente:RF.02 - Autenticar

Descricdo

Um utilizador realiza uma autenticagdo. De forma a realizar esta, o Auth Provider configurado
no hub serd utilizado.

Pré-Condigdes

Acesso & internet e dispositivo compativel.
Existéncia prévia do hub caso hub dindmicos ndo estejam permitidos.
Existéncia de um Auth Provider e de um recetor do pedido configurado no Auth Provider.

Uma sessdo estabelecida, por um meio de comunicacéo bidirecional.

Pds-Condicoes

Acesso aos recursos publicos e autorizados da aplicacéo, caso a autenticacdo seja sucedida,
caso contrario, dependendo se 0 hub permite utilizadores anénimos ou ndo a sessdo seré
terminada.

Percurso Normal

Utilizando uma sesséo bidirecional ativa, o cliente envia uma mensagem definida no protocolo
como de autenticacdo, a aplicagdo ird redirecionar esta mensagem pelo meio definido no
AuthProvider e ird aguardar uma resposta. Assim que recebida, as permissdes da sessdo serao
atualizadas, e mensagens com estas mensagens serdo enviadas para o cliente.

Na eventualidade, da autenticacdo ndo for sucedida, seja devido a falhas ou informacéo
invalida e o hub ndo permitir sess6es andnimas, esta sera terminada de imediato, caso
contrério sera somente enviada uma mensagem a notificar que a operacdo néo foi bem
sucedida.

Percursos
Alternativos

Além do processo normal de autenticacdo, € possivel iniciar uma sessdo pré-autenticada,
através da utilizacdo de um token de autenticacdo ao estabelecer a sessdo, ou ao restaurar uma
sessao.

Req. ndo-funcionais

Acesso a internet.

A sessdo tem um tempo limite para se autenticar caso o hub ndo permita sess6es anénimas.

139

4.3 Os Requisitos Funcionais para “Cliente”

4.3.1 Requisito Funcional “Publicar”

Identificador & Nome

Cliente:RF.03 - Publicar

Descricédo

Um utilizador publica um evento num channel.

Pré-Condicdes

Acesso a internet e dispositivo compativel.
Uma sessdo estabelecida, por um meio de comunicacéo bidirecional.

Autorizacdo para o channel a ser publicado.

Pés-Condicbes

A mensagem deve ser processada e enviada para todas sessdes subscritas no channel.

Percurso Normal

Utilizando uma sesséo bidirecional ativa, o cliente envia uma mensagem definida no protocolo
como de publicagdo com o channel indicado e de um tipo que o permite. A aplicagdo ird
receber esta mensagem, verificar a autorizacdo e enviar a mensagem para o channel a ser
processado. Caso a mensagem envie um identificador de mensagem, o cliente ira receber uma
confirmag&o da publicacdo da mensagem.

Na eventualidade, da sessdo nao ter permissdes suficientes, serd somente enviada uma
mensagem a notificar que a operacdo ndo foi bem sucedida.

Percursos
Alternativos

Além do processo normal de publicacdo numa sessdo, € possivel o fazer utilizando um pedido
HTTP com um token de autenticagdo com permissGes para o channel em quest&o.

Reg. ndo-funcionais

Acesso a internet.

140

4.3.2 Requisito Funcional “Subscrever”

Identificador & Nome

Cliente:RF:04 - Subscrever

Descrigdo

Um utilizador subscreve-se a um channel.

Pré-Condigdes

Acesso & internet e dispositivo compativel.
Uma sessdo estabelecida, por um meio de comunicacéo bidirecional.

Autorizagdo para o channel a ser subscrito.

Pés-Condicoes

Futuras mensagens no channel serdo recebidas pela sesséo.

Percurso Normal

Utilizando uma sessdo bidirecional ativa, o cliente envia uma mensagem definida no protocolo
como de subscri¢do com o channel indicado. A aplicacao ir& receber esta mensagem, verificar
a autorizacdo e adicionar a subscricdo ao channel. O cliente receberd uma confirmacédo da
subscri¢do da mensagem.

Na eventualidade, da sessdo nao ter permissdes suficientes, serd somente enviada uma
mensagem a notificar que a operacdo nao foi bem sucedida.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.3.3 Requisito Funcional “Remover Subscri¢do”

Identificador & Nome

Cliente:RF.05 - Remover Subscri¢do

Descrigéo

Um utilizador remove a sua subscrigdo a um channel.

Pré-Condigdes

Acesso a internet e dispositivo compativel.
Uma sessdo estabelecida, por um meio de comunicacédo bidirecional.

Sessdo ja subscrita ao channel.

Pés-Condicoes

Futuras mensagens no channel ndo serdo recebidas pela sesséo.

Percurso Normal

Utilizando uma sess&o bidirecional ativa, o cliente envia uma mensagem definida no protocolo
como de remover a subscrigdo com o channel indicado. A aplicacdo ira receber esta
mensagem, verificar se este estd subscrito e remover a subscri¢do ao channel. O cliente
recebera uma confirmagédo da remoc&o da subscricdo da mensagem.

Na eventualidade, de uma falha ocorrer, serd enviada uma mensagem a notificar que a

141

operacao nao foi bem sucedida.

Percursos
Alternativos

N&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.3.4 Requisito Funcional “RPC”

Identificador & Nome

Cliente:RF.06 - RPC

Descrigéo

Um utilizador realiza um RPC (Remote Procedure Call).

Pré-Condigdes

Acesso a internet e dispositivo compativel.
Uma sessdo estabelecida, por um meio de comunicacéo bidirecional.

Sessdo autenticada e com permissdo para o RPC a realizar.

Pés-Condicbes

Na&o identificadas

Percurso Normal

Utilizando uma sessdo bidirecional ativa, o cliente envia uma mensagem definida no protocolo
como de RPC com o método indicado. A aplicacdo ird receber esta mensagem, verificar se a
sessao tem autorizagdo para 0 método e ira redirecionar o contetido da mensagem por NATS
para um recipiente interessado no método e aguardar a sua resposta. Assim que a resposta seja
recebida, esta seria enviada para o cliente.

Na eventualidade, de uma falha ocorrer, serd enviada uma mensagem a notificar que a
operacao nao foi bem sucedida.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.3.5 Requisito Funcional “Pedir historico de channel”

Identificador & Nome

Cliente:RF:07 - Pedir histérico de channel

Descri¢do

Um utilizador envia um pedido para receber o histérico de um channel e recebe uma pagina
com o historico disponivel.

Pré-Condicgdes

Acesso & internet e dispositivo compativel.

142

Uma sessdo estabelecida, por um meio de comunicacéo bidirecional.

Sessdo com permissao para o channel a ser utilizado.

Pés-Condicoes

N&o identificadas.

Percurso Normal

Utilizando uma sesséo bidirecional ativa, o cliente envia uma mensagem definida no protocolo
como de pedir historico de channel com o channel indicado. A aplicacao ira receber esta
mensagem, verificar se a sessdo tem autorizacdo para o pedido e buscar uma pagina de Gltimas
mensagens que sera enviada de volta para o cliente. Neste pedido, pode ser enviado a Gltima
timestamp que o cliente tenha, de forma a receber mensagens mais recentes do que a
timestamp enviada.

Na eventualidade, de uma falha ocorrer, serd enviada uma mensagem a notificar que a
operacdo néo foi bem sucedida.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.3.6 Requisito Funcional “Buscar Documento”

Identificador & Nome

Cliente:RF:08 - Buscar Documento

Descrigdo

Um utilizador envia um pedido para receber o valor atual de um documento pertencente a um
channel e o recebe.

Pré-Condicgdes

Acesso & internet e dispositivo compativel.
Uma sessdo estabelecida, por um meio de comunicacéo bidirecional.
Sessdo com permissao para o channel a ser utilizado.

O channel a ser utilizado deve ser do tipo channel.

Pds-Condicoes

Na&o identificadas

Percurso Normal

Utilizando uma sess&o bidirecional ativa, o cliente envia uma mensagem definida no protocolo
como de buscar um documento pertencente de um channel. A aplicacao ira receber esta
mensagem, verificar se a sessdo tem autorizacdo para o pedido e enviar uma cépia do
documento do channel. Na eventualidade, de uma falha ocorrer ser& enviada uma mensagem a
notificar que a operacdo ndo foi bem sucedida.

Percursos
Alternativos

N&o existem percursos alternativos.

143

Req. ndo-funcionais

Acesso a internet.

4.3.7 Requisito Funcional “Atualizar Documento”

Identificador & Nome

Cliente:RF.09 - Atualizar Documento

Descricdo

Um utilizador envia um pedido para atualizar o documento de um channel e recebe uma
pagina com o historico disponivel.

Pré-Condicdes

Acesso a internet e dispositivo compativel.
Uma sessdo estabelecida, por um meio de comunicacéo bidirecional.

Sessdo com permissao para o channel a ser utilizado.

Pés-Condices

O documento deve manter as alteracdes efetuadas e enviar as operagdes realizadas para todas
as sessdes subscritas.

Percurso Normal

Utilizando uma sessdo bidirecional ativa, o cliente envia uma mensagem definida no protocolo
como de atualiza¢do de documento com o channel indicado. A aplicagdo ird receber esta
mensagem, verificar se a sessdo tem autorizacdo para o pedido e aplicar as alteracoes
enviadas, posteriormente deve enviar estas alteracfes para todas sessdes e enviar uma
confirmac&o de que a operacéo foi realizada ao cliente.

Na eventualidade, de uma falha ocorrer, serd enviada uma mensagem a notificar que a
operacao nao foi bem sucedida.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.3.8 Requisito Funcional “Marcar notificagdo como lida”

Identificador & Nome

Cliente:RF:10 - Marcar notificagcdo como lida

Descrigéo

Um utilizador envia um pedido para marcar uma ou mais notificacdes como lidas num
channel.

Pré-Condigdes

Acesso a internet e dispositivo compativel.
Uma sessdo estabelecida, por um meio de comunicacédo bidirecional.

Sessdo com permissdo para o channel a ser utilizado.

144

Pés-Condicoes

As notificacdes devem manter o seu estado atualizado de lido e devem notificar todos inscritos
das alteracdes.

Percurso Normal

Utilizando uma sessdo bidirecional ativa, o cliente envia uma mensagem definida no protocolo
como de marcar a notificacdo como lida com o channel indicado. A aplicacéo ira receber esta
mensagem, verificar se a sessdo tem autorizacdo para o pedido e aplicar as alteraces
enviadas, posteriormente deve enviar estas alteracfes para todas sessfes e enviar uma
confirmac&o de que a operacdo foi realizada ao cliente.

Na eventualidade, de uma falha ocorrer, serd enviada uma mensagem a notificar que a
operacdo nao foi bem sucedida.

Adicionalmente, este pedido suporta realizar a alteracdo para um conjunto de de notificacGes
de forma a reduzir a quantidade de pedidos feitos.

Percursos
Alternativos

N&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.3.9 Requisito Funcional “Registar Push Token”

Identificador & Nome

Cliente:RF:11 - Registrar Push Token

Descrigdo

Um utilizador envia um pedido para registar o seu push token, de forma que este fique
associado.

Pré-Condicgdes

Acesso a internet e dispositivo compativel.
Uma sessdo estabelecida, por um meio de comunicacéo bidirecional.
Token de autenticacdo.

Token de Firebase pré-existente.

Pds-Condicoes

O token deve ficar registrado e ser utilizado sempre que uma mensagem com a funcionalidade
de Push Notification for enviada.

Percurso Normal

Utilizando o token de autenticagdo pré-existente, o cliente envia um pedido HTTP com o
token de autenticacdo e Firebase token. Este fica posteriormente associado ao identificador de
utilizador.

Na eventualidade, de uma falha ocorrer, serd enviado o c6digo de erro HTTP 500.

Percursos
Alternativos

Né&o existem percursos alternativos.

145

Req. ndo-funcionais

Acesso a internet.

4.3.10 Requisito Funcional “Buscar notifica¢des nao lidas de um channel”

Identificador & Nome

Cliente:RF:12 - Buscar notificacGes nao lidas de um channel

Descricdo

Um utilizador envia um pedido HTTP para buscar notificacdes de um channel do tipo
notification e recebe de forma paginada as notificagdes nao lidas. A paginacéo é baseada em
timestamps.

Pré-Condicdes

Acesso a internet e dispositivo compativel.

Token de autenticagdo com permissdo para o channel a ser utilizado.

Pds-Condicoes

Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticagdo pré-existente, o cliente envia um pedido HTTP com o
token de autenticacdo, o channel e Gltima timestamp disponivel, utilizando esta informag&o a
aplicacdo ira retornar as notificacdes néo lidas a seguir a timestamp.

Na eventualidade, de uma falha ocorrer, serd enviado o c6digo de erro HTTP 500.

Percursos
Alternativos

Na&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.3.11 Requisito Funcional “Buscar notifica¢des de um channel”

Identificador & Nome

Cliente:RF.13 - Buscar notificagdes de um channel

Descrigdo

Um utilizador envia um pedido HTTP para buscar notifica¢cdes de um channel do tipo
notification e recebe de forma paginada as notificagdes. A paginacao é baseada em
timestamps.

Pré-Condigdes

Acesso a internet e dispositivo compativel.

Token de autenticacdo com permissao para o channel a ser utilizado.

Pés-Condicoes

Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticacdo pré-existente, o cliente envia um pedido HTTP com o
token de autenticacéo, o channel e Gltima timestamp disponivel, utilizando esta informagéo a

146

aplicacdo ira retornar as notificacdes a seguir a timestamp.

Na eventualidade, de uma falha ocorrer, serd enviado o c6digo de erro HTTP 500.

Percursos
Alternativos

N&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.4 Os Requisitos Funcionais para “Administrador”

4.4.1 Requisito Funcional “Criar Auth Provider para um Hub”

Identificador & Nome

Admin:RF:14 - Criar Auth Provider para um Hub

Descrigéo

Um administrador envia um pedido HTTP, com a informagéo necesséria para criar um Auth
Provider pertencente a um Hub.

Pré-Condigdes

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pds-Condicoes

Auth Provider criado devera ficar armazenado de forma a poder ser a utilizado posteriormente.

Percurso Normal

Utilizando o token de autenticagdo pré-existente, o cliente envia um pedido HTTP com o
token de autenticacdo, o hub e configuragdes necessarias, utilizando esta informacéo a
aplicacéo deverd criar um Auth Provider e armazend-lo e retornar este ao administrador.

Na eventualidade, de uma falha ocorrer, serd enviado o codigo de erro HTTP 500.

Percursos
Alternativos

Nao existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.4.2 Requisito Funcional “Buscar Auth Providers”

Identificador & Nome

Admin:RF:15 - Buscar Auth Providers

Descri¢do

Um administrador envia um pedido HTTP e recebe uma lista de todos Auth Providers
existentes.

Pré-Condicgdes

Acesso & internet e dispositivo compativel.

147

Token de autenticacdo de administrador.

Pds-Condicoes

Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticacdo pré-existente, o cliente envia um pedido HTTP com o
token de autenticacao, a aplicacdo devera retornar uma lista com todos Auth Providers
previamente criados.

Na eventualidade, de uma falha ocorrer, serd enviado o cddigo de erro HTTP 500.

Percursos
Alternativos

N&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.4.3 Requisito Funcional “Definir configuragdes para um channel”

Identificador & Nome

Admin:RF:16 - Definir configuragdes para um channel

Descrigdo

Um administrador envia um pedido HTTP com a informagao necesséria de forma a atribuir
configuracGes a um channel.

Pré-Condicgdes

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pés-Condices

As configuragdes aplicadas no channel devem ser propagadas por todas as instancias
pertencentes ao cluster.

Percurso Normal

Utilizando o token de autenticacdo pré-existente, o cliente envia um pedido HTTP com o
token de autenticacéo, o hub, channel e configurac6es a serem aplicadas, utilizando esta
informacdo a aplicacdo devera armazenar as configuragGes e notificar todo o cluster que as
configuragOes para aquele channel foram alteradas.

Na eventualidade, de uma falha ocorrer, serd enviado o cédigo de erro HTTP 500.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

148

4.4.4 Requisito Funcional “Buscar configuragdes para um channel”

Identificador & Nome

Admin:RF:17 - Buscar configuracdes de um channel

Descricdo

Um administrador envia um pedido HTTP com a informagao necessaria de forma a retornar as
configurac@es atuais de um channel.

Pré-Condigdes

Acesso & internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pés-Condicoes

Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticagdo pré-existente, o cliente envia um pedido HTTP com o
token de autenticacéo, o hub e channel, utilizando esta informagao a aplicag&o retornar as
configuraces atualmente existentes no channel em questéo.

Na eventualidade, de uma falha ocorrer sera enviado o cédigo de erro HTTP 500.

Percursos
Alternativos

Na&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.45 Requisito Funcional “Publicar em um channel”

Identificador & Nome

Admin:RF:18 - Publicar em um channel

Descrigéo

Um administrador envia um pedido HTTP com a informagao necessaria de forma a um evento
ser publicado num channel.

Pré-Condigdes

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pés-Condicoes

O evento enviado deve ser enviado para todas sessfes subscritas ao channel em quest&o.

Percurso Normal

Utilizando o token de autenticacdo pré-existente, o administrador envia um pedido HTTP com
o token de autenticagdo, o hub, channel e eventos. Utilizando esta informag&o a aplicacéo ird
publicar os eventos no channel e retornar se as publicacfes ocorreram com sucesso por cada
evento.

Percursos
Alternativos

N&o existem percursos alternativos.

149

Req. ndo-funcionais

Acesso a internet.

4.4.6 Requisito Funcional “Definir metadata de um channel”

Identificador & Nome

Admin:RF:19 - Definir metadata de um channel

Descricdo

Um administrador envia um pedido HTTP com a informagao necessaria de forma que a
metadata enviada seja aplicada a um channel.

Pré-Condicdes

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pés-Condicbes

A metadata enviada deve ficar armazenada

Percurso Normal

Utilizando o token de autenticacdo pré-existente, 0 administrador envia um pedido HTTP com
o token de autenticagdo, o hub, channel e metadata a ser aplicada. Utilizando esta informag&o
a aplicacgdo ira armazenar a metadata enviada substituindo valores existentes.

Percursos
Alternativos

Nao existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.4.7 Requisito Funcional “Buscar metadata de um channel”

Identificador & Nome

Admin:RF:20 - Buscar metadata de um channel

Descrigdo

Um administrador envia um pedido HTTP com a informag&o necessaria de forma a buscar os
metadados definidos num channel.

Pré-Condicgdes

Acesso & internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pés-Condicoes

Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticagdo pré-existente, o administrador envia um pedido HTTP com
o token de autenticagdo, o hub e o channel. Utilizando esta informacéo a aplicagdo ira
armazenar buscar a metadata do channel e a retornar ao cliente.

Percursos

N&o existem percursos alternativos.

150

Alternativos

Reg. ndo-funcionais

Acesso a internet.

4.4.8 Requisito Funcional “Definir/Atualizar namespace”

Identificador & Nome

Admin:RF:21 - Definir/Atualizar namespace

Descrigdo

Um administrador envia um pedido HTTP com a informacédo necessaria de forma a criar um
namespace

Pré-Condi¢des

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pés-Condices

As configuragdes aplicadas no namespace devem ser propagadas por todas instancias
pertencentes ao cluster.

Percurso Normal

Utilizando o token de autenticacdo pré-existente, o administrador envia um pedido HTTP com
o token de autenticagéo, o hub, identificador de Channel Rules e nome do namespace.
Utilizando esta informacéo a aplicacao ird armazenar a existéncia do namespace e notificar
todos membros do cluster da atualizacdo/criacdo do namespace.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

449 Requisito Funcional “Eliminar namespace”

Identificador & Nome

Admin:RF:22 - Eliminar namespace

Descrigéo

Um administrador envia um pedido HTTP com a informagao necessaria de forma a eliminar
um namespace

Pré-Condicdes

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pds-Condicoes

A eliminacdo no namespace deve ser propagada por todas as instancias pertencentes ao
cluster.

Percurso Normal

Utilizando o token de autenticacdo pré-existente, 0 administrador envia um pedido HTTP com

151

o token de autenticacgdo, o hub, e nome do namespace. Utilizando esta informacao a aplicacdo
ird eliminar a definices armazenadas sobre a existéncia do namespace e notificar todos
membros do cluster da eliminacdo do namespace.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.4.10 Requisito Funcional “Definir configura¢des de um hub”

Identificador & Nome

Admin:RF:23 - Definir configuracdes de um hub

Descrigéo

Um administrador envia um pedido HTTP com a informagao necessaria de forma a criar ou
atualizar as configuragfes de um Hub.

Pré-Condi¢des

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pds-Condicoes

As modificagdes no hub devem ser propagadas por todas as instancias pertencentes ao cluster.

Percurso Normal

Utilizando o token de autenticacdo pré-existente, 0 administrador envia um pedido HTTP com
o token de autenticagdo, o hub e configura¢des a serem aplicadas. Utilizando esta informag&o
a aplicacdo armazena as configuracGes do hub e notifica todos membros do cluster das
alteracGes do hub.

Percursos
Alternativos

Na&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.4.11 Requisito Funcional “Buscar configuragdes de um hub”

Identificador & Nome

Admin:RF:24 - Buscar configuragdes de um hub

Descrigéo

Um administrador envia um pedido HTTP com a informacao necesséria de forma a criar ou
atualizar as configuracfes de um Hub.

Pré-Condigdes

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

152

Pés-Condicoes

Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticacéo pré-existente, o administrador envia um pedido HTTP com
o token de autenticagdo e o hub. Utilizando esta informac&o a aplicacéo ira buscar as
configuracGes armazenadas do hub e retornar ao cliente.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.4.12 Requisito Funcional “Criar notificagdo num channel”

Identificador & Nome

Admin:RF:25 - Criar notificagdo num channel

Descrigéo

Um administrador envia um pedido HTTP com a informagao necessaria de forma a criar uma
notificagdo num channel

Pré-Condi¢des

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pés-Condices

As sessdes subscritas devem receber a nova notificagdo criada e uma atualizagéo no numero
de notificacdes ndo lidas.

Percurso Normal

Utilizando o token de autenticacdo pré-existente, 0 administrador envia um pedido HTTP com
o token de autenticacgdo, o hub, channel e notificacdo. Utilizando esta informacéo a aplicacdo
ira processar a notificacdo, enviar para as sessoes subscritas e enviar uma confirmagéo de
operacao ao cliente.

Na eventualidade de um erro ocorrer, uma resposta com HTTP 500 sera retornada.

Percursos
Alternativos

N&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

153

4.4.13 Requisito Funcional “Buscar informacao de presen¢a de um channel”

Identificador & Nome

Admin:RF:26 - Buscar informacao de presenca de um channel

Descricdo

Um administrador envia um pedido HTTP com a informagao necesséria de forma a buscar a
presenca atual num channel

Pré-Condicoes

Acesso a internet e dispositivo compativel.
Token de autenticacdo de administrador.

O channel deve ter a funcionalidade de presenca ativa.

Pés-Condicbes

Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticacdo pré-existente, 0 administrador envia um pedido HTTP com
o0 token de autenticagdo, o hub e channel. Utilizando esta informacéo a aplicagdo ira copiar a
informacdo de presenca do channel atual e enviar ao cliente.

Na eventualidade de um erro ocorrer, uma resposta com HTTP 500 sera retornada.

Percursos
Alternativos

Na&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.4.14 Requisito Funcional “Definir channel rules”

Identificador & Nome

Admin:RF:27 - Definir channel rules

Descrigdo

Um administrador envia um pedido HTTP com a informag&o necessaria de forma a definir ou
atualizar um channel rules.

Pré-Condicgdes

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pds-Condicoes

Todos os channels e hub devem ser notificados caso estejam a usar o channel rule atualizado.

Percurso Normal

Utilizando o token de autenticagdo pré-existente, o administrador envia um pedido HTTP com
o token de autenticagdo, o hub, identificador de channel rules e configuragdes. Utilizando esta
informacdo a aplicagdo armazena as novas configuraces e notifica todas as instancias do
cluster da alteragdo do channel rules.

154

Na eventualidade de um erro ocorrer, uma resposta com HTTP 500 sera retornada.

Percursos
Alternativos

N&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.4.15 Requisito Funcional “Buscar channel rules”

Identificador & Nome

Admin:RF:28 - Buscar channel rules

Descrigdo

Um administrador envia um pedido HTTP com a informag&o necessaria de forma a buscar as
configurac@es definidas num channel rules.

Pré-Condicgdes

Acesso a internet e dispositivo compativel.

Token de autenticacdo de administrador.

Pds-Condicoes

Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticacdo pré-existente, o administrador envia um pedido HTTP com
o token de autenticagdo, o hub e identificador de channel rules. Utilizando esta informacéao a
aplicacdo busca o armazenamento das configuragdes atuais e retornar ao cliente.

Na eventualidade de um erro ocorrer, uma resposta com HTTP 500 sera retornada.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

155

4.5 Os Requisitos Funcionais para “Servi¢o”

4.5.1 Requisito Funcional “Publicar num channel”

Identificador & Nome

Service:RF:29 - Publicar num channel

Descrigdo

Um servico envia um pedido através do NATS com a informacdo necessaria para publicar um
ou mais eventos num channel.

Pré-Condigdes

Acesso & internet e dispositivo compativel.
Conexdo autenticada com NATS.

PermissOes para o subjects no NATS.

Pds-Condicoes

O evento enviado deve ser enviado para todas sessdes subscritas ao channel em questao.

Percurso Normal

Utilizando a conexdo com o NATS, o servigo envia um pedido com o hub, channel e eventos,
utilizando esta informac&o a aplicacdo ira publicar os eventos no channel e retornar se as
publicaces ocorreram com sucesso por cada evento.

Na eventualidade, de uma falha ocorrer, serd enviado uma mensagem no tipo NACK
(Negative Acknowledge), definido pelo software NATS.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.5.2 Requisito Funcional “Criar notificagdo num channel”

Identificador & Nome

Service:RF:30 - Criar notificagdo num channel

Descrigéo

Um servico envia um pedido através do NATS com a informagéo necessaria para criar uma
notificagdo num channel.

Pré-Condigdes

Acesso a internet e dispositivo compativel.
Conexao autenticada com NATS.

PermissOes para o subjects no NATS.

Pés-Condicoes

A notificacdo criada deve ser enviada para todas sessdes subscritas ao channel em questéo.

Percurso Normal

Utilizando a conexdo com o NATS, o servigo envia um pedido com o hub, channel e
notificagdo, utilizando esta informacéao a aplicagdo ir& publicar a notificacdo no channel e

156

retornar se esta ocorreu Com sucesso.

Na eventualidade, de uma falha ocorrer, serd enviado uma mensagem no tipo NACK
(Negative Acknowledge), definido pelo software NATS.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.5.3 Requisito Funcional “Definir metadata num channel”

Identificador & Nome

Service:RF:31 - Definir metadata num channel

Descrigéo

Um servico envia um pedido através do NATS com a informacéo necessaria para definir ou
atualizar a metadata de um channel.

Pré-Condi¢des

Acesso a internet e dispositivo compativel.
Conexao autenticada com NATS.

Permissdes para o subjects no NATS.

Pds-Condicoes

A metadata deve ficar armazenada.

Percurso Normal

Utilizando a conexdo com o NATS, o servigo envia um pedido com o hub, channel e
metadata, utilizando esta informag&o a aplicacdo ira atualizar o metadata de um channel
substituindo valores ja existentes na base de dados.

Na eventualidade, de uma falha ocorrer, serd enviado uma mensagem no tipo NACK
(Negative Acknowledge), definido pelo software NATS.

Percursos
Alternativos

Nao existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.5.4 Requisito Funcional “Buscar metadata de um channel”

Identificador & Nome

Service:RF:32 - Buscar metadata de um channel

Descri¢do

Um servico envia um pedido através do NATS com a informacao necessaria para buscar a
metadata de um channel.

157

Pré-Condicoes

Acesso a internet e dispositivo compativel.
Conexdo autenticada com NATS.

PermissOes para o subjects no NATS.

Pés-Condicoes

Nenhuma identificada

Percurso Normal

Utilizando a conexdo com o NATS, o servigo envia um pedido com o hub e channel,
utilizando esta informacéo a aplicacdo ira retornar a metadata do channel armazenados na base
de dados.

Na eventualidade, de uma falha ocorrer sera enviado uma mensagem no tipo NACK (Negative
Acknowledge), definido pelo software NATS.

Percursos
Alternativos

N&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

455 Requisito Funcional “Definir/Atualizar namespace”

Identificador & Nome

Service:RF:33 - Definir/Atualizar namespace

Descrigdo

Um servico envia um pedido através do NATS com a informacao necessaria para buscar a
metadata de um channel.

Pré-Condicgdes

Acesso & internet e dispositivo compativel.
Conexao autenticada com NATS.

Permissdes para o subjects no NATS.

Pds-Condicoes

As configuragdes aplicadas no namespace devem ser propagadas por todas instancias
pertencentes ao cluster.

Percurso Normal

Utilizando a conexdo com o NATS, o servigo envia um pedido com o hub, identificador de
channel rules e nome do namespace. Utilizando esta informacéo a aplicacdo ira armazenar a
existéncia do namespace e notificar todos membros do cluster da atualiza¢do/criagédo do
namespace, e por fim retorna se a operagdo ocorreu com sucesso.

Na eventualidade, de uma falha ocorrer, serd enviado uma mensagem no tipo NACK
(Negative Acknowledge), definido pelo software NATS.

Percursos
Alternativos

Né&o existem percursos alternativos.

158

Req. ndo-funcionais

Acesso a internet.

4.5.6 Requisito Funcional “Eliminar namespace”

Identificador & Nome

Service:RF:34 - Eliminar namespace

Descricdo

Um servico envia um pedido através do NATS com a informag&o necessaria para eliminar um
namespace.

Pré-Condicdes

Acesso a internet e dispositivo compativel.
Conexao autenticada com NATS.

Permissdes para o subjects no NATS.

Pés-Condices

A eliminagdo no namespace deve ser propagada por todas as instancias pertencentes ao
cluster.

Percurso Normal

Utilizando a conexdo com o NATS, o servigo envia um pedido com o hub e nome do
namespace. Utilizando esta informacéo a aplicacdo ira eliminar a defini¢bes armazenadas
sobre a existéncia do namespace e notificar todos membros do cluster da eliminagdo do
namespace.

Na eventualidade, de uma falha ocorrer sera enviado uma mensagem no tipo NACK (Negative
Acknowledge), definido pelo software NATS.

Percursos
Alternativos

N&o existem percursos alternativos.

Req. ndo-funcionais

Acesso a internet.

4.5.7 Requisito Funcional “Definir configuragdes num channel”

Identificador & Nome

Service:RF:35 - Definir configuragdes num channel

Descrigéo

Um servico envia um pedido através do NATS com a informagéo necessaria para definir as
configurac6es de um channel.

Pré-Condigdes

Acesso a internet e dispositivo compativel.
Conexao autenticada com NATS.

PermissOes para o subjects no NATS.

159

Pés-Condicoes

As configuracdes aplicadas no channel devem ser propagadas por todas instancias
pertencentes ao cluster.

Percurso Normal

Utilizando a conexdo com o NATS, o servigo envia um pedido com o hub, channel e
configuracGes a serem aplicadas. Utilizando esta informacao a aplicagdo devera armazenar as
configuraces e notificar todo o cluster que as configura¢Bes para aquele channel foram
alteradas.

Na eventualidade, de uma falha ocorrer serd enviado uma mensagem no tipo NACK (Negative
Acknowledge), definido pelo software NATS.

Percursos
Alternativos

N&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.5.8 Requisito Funcional “Definir Channel Rules”

Identificador & Nome

Service:RF:36 - Definir Channel Rules

Descrigéo

Um servico envia um pedido através do NATS com a informagéo necessaria para criar um
channel rules.

Pré-Condigdes

Acesso a internet e dispositivo compativel.
Conexao autenticada com NATS.

Permissdes para o subjects no NATS.

Pés-Condices

Todos os channels e hub devem ser notificados caso estejam a usar o channel rule atualizado.

Percurso Normal

Utilizando a conexdo com o NATS, o servigo envia um pedido com o hub, identificador de
channel rules e configuracdes a serem aplicadas. Utilizando esta informacéo a aplicacéo
armazena as novas configuracgdes e notifica todas as instancias do cluster da alteracéo do
channel rules.

Na eventualidade, de uma falha ocorrer, serd enviado uma mensagem no tipo NACK
(Negative Acknowledge), definido pelo software NATS.

Percursos
Alternativos

Né&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

160

4.5.9 Requisito Funcional “Publicar num channel”

Identificador & Nome

Service:RF:37 - Definir configuragdes num hub

Descricdo

Um servico envia um pedido através do NATS com a informag&o necessaria para definir as
configurag@es de um hub.

Pré-Condigdes

Acesso & internet e dispositivo compativel.
Conexdo autenticada com NATS.

PermissOes para o subjects no NATS.

Pds-Condicoes

As modificagdes no hub devem ser propagadas por todas as instancias pertencentes ao cluster.

Percurso Normal

Utilizando a conexdo com o NATS, o servico envia um pedido com o hub e configuracGes a
serem aplicadas. Utilizando esta informagao a aplicacdo armazenar as configuragdes do hub e
notificar todos membros do cluster das alteraces do hub.

Na eventualidade, de uma falha ocorrer, serd enviado uma mensagem no tipo NACK
(Negative Acknowledge), definido pelo software NATS.

Percursos
Alternativos

Na&o existem percursos alternativos.

Reg. ndo-funcionais

Acesso a internet.

4.5.10 Requisito Funcional “Publicar num channel”

Identificador & Nome

Service:RF:38 - Criar Auth Provider

Descrigdo

Um servico envia um pedido através do NATS com a informagao necessaria para criar um
Auth Provider pertencente a um Hub.

Pré-Condicgdes

Acesso & internet e dispositivo compativel.
Conexdo autenticada com NATS.

PermissOes para o subjects no NATS.

Pds-Condicoes

Auth Provider criado devera ficar armazenado de forma a poder ser a utilizado posteriormente.

Percurso Normal

Utilizando a conexdo com o NATS, o servico envia um pedido com o hub e configuraces a
serem aplicadas. Utilizando esta informacéo a aplicacao devera criar um Auth Provider e
armazena-lo e retornar este ao servigo.

Na eventualidade, de uma falha ocorrer seré enviado uma mensagem no tipo NACK (Negative

161

Acknowledge), definido pelo software NATS.

Percursos N&o existem percursos alternativos.
Alternativos

Reg. ndo-funcionais
Acesso & internet.

5. Requisitos Nao-Funcionais

5.1 Requisitos de Performance

A performance e escalabilidade sdo dos pontos importantes desta aplicacdo, assim sendo, foram
tomadas decisfes sobre tecnologias a utilizar e métodos a aplicar. Alguns exemplos, passam pela
utilizagdo da linguagem Go, sendo uma linguagem com baixo consumo de memdria e bastante eficiente,
esta linguagem é importante visto que permite um controle mais granular sobre quais partes ficam no
stack ou no heap, a utilizagdo de apontadores de memdria para um maior controlo sobre copias de
informacdo e a existéncia de lightweight threads de forma a permitir que aplicagdo utilize todos os
nacleos do processador disponiveis. Toda a informacdo na aplicacdo é mantida em cache sempre que
possivel, evitando realizar pedidos & base de dados em partes da aplicagdo muito executados,
sacrificando a velocidade de atualizacdo da aplicacdo por um maior desempenho e laténcia reduzida.

A nivel de escalabilidade é necessario que esta aplicacéo seja distribuida de forma a ter mais instancias
e maior capacidade de processamento em paralelo, adicionalmente, esta devera evitar pontos Unicos de
falha. De forma a realizar estes pontos, a aplicacdo ira utilizar o protocolo gossip de forma a ser
distribuida e evitar a existéncia de um lider central de informagé&o.

5.2 Requisitos de Protecao

A aplicacdo ndo ira gerir dados sensiveis, toda a informacéo enviada pela aplicacdo é completamente
transparente a esta, toda a informacéo é tratada como um conjunto de bytes e a pouca que é armazenada
ndo é modificavel sem ser pela base de dados diretamente, ndo sendo uma responsabilidade da
aplicagao.

N&o é recomendado armazenar informagdes sensiveis em metadados de um channel, e 0 acesso a
channels com metadados deve ser apenas permitida a utilizadores autenticados. Adicionalmente, nao é
recomendado o envio de informagéo sensivel em eventos, caso seja necessario, o conteido dentro do
evento pode ser encriptado pelo cliente, como ja referido a aplicacdo ndo 1€ o conteildo do evento.

5.3 Requisitos de Seguranca

Esta aplicacdo permite a utilizagdo por utilizadores an6nimos, no entanto, é possivel ndo os permite
sendo passado essa responsabilidade a quem utiliza o Hub, adicionalmente, é possivel definir
configuragdes restritas por defeito a todos os channels do hub por defeito, definindo somente em alguns
channels configuragdes mais permissiveis.

162

Os caminhos indicados no Auth Provider devem enviar a informacgéo por protocolos com encriptacéo,
sendo no caso de HTTP a utilizacdo de SSL/TLS, e no caso do NATS uma conex&o encriptada e com
permissOes restritas a APl disponivel por este. Adicionalmente, ndo € necessario enviar informacao
sensivel para autenticar um utilizador, no conteido pode ser enviado um token, hash de password ou
similares, sendo que a verificagdo de autenticacdo e permissdes de uma sessao cabe ao destinatario do
Auth Provider.

Em casos de sistemas ja existentes onde tokens séo utilizados para autenticacédo, estes podem ser usados
como contetdo de autenticacdo, tendo o destinatario do Auth Provider somente confirmar se o token é
valido.

Todos os tokens gerados devem ser de curta duragdo e armazenados de forma temporéario e segura nos
dispositivos onde estes sao utilizados.

Por fim, a utilizacdo de HTTPS pelo cliente € recomendada e deveria ser obrigatoria, sendo o caso no
ambiente de execucdo na plataforma AWS.

5.4 Requisitos Ndo-Funcionais das Regras de Negdcio

Estdo contemplados os seguintes requisitos ndo-funcionais relacionados com regras de negdcio:
e RNF001: A aplicagdo AppSockets deve estar sempre ligada & Internet/Intranet
e RNF002: Para utilizar qualquer uma das funcionalidades disponibilizadas pelas APIs, os
utilizadores devem estar conectados a internet
e RNF003: Deve ser definido um tamanho maximo para mensagens de sessdes

6. Outros Requisitos

Segue a lista de requisitos que, embora néo estejam considerados no desenvolvimento da aplicacao,
podem influenciar a correta experiéncia e utilizacdo da mesma. Para o efeito, listam-se 0s seguintes
requisitos ndo-funcionais independentes da aplicacéo:

e O dispositivo cliente devera ter um conjunto minimo de especifica¢bes de hardware (RAM,
processador, etc..) de modo a permitir a utilizagdo sem falhas, visto que certos channels
podem ter um fluxo de eventos muito elevado.

e Os servidores onde a aplicacao ira ser executada devem ter boas especificacdes para suportar
um maior numero de sessdes, a aplicacdo foi testada na instancia mais fraca disponivel no
servico AWS ECS com somente 0.25 VCpu e 0.5 GB de RAM.

7. Lista de Itens a Elaborar na Fase de Desenho

e Estrutura definitiva de cada classe a implementar no SlI.
o Atributos, respetiva visibilidade e modo de acesso, e exposi¢éo para o exterior
o Métodos, publicos e privados

e Estrutura final da Base de Dados.

e FEstrutura, métodos e interfaces das APIs de Administrador e Cliente.

163

8.

Continuidade do Processo de Desenvolvimento

Apos a conclusdo da anélise de requisitos do projeto AppSockets, transposta neste documento de SRS,
sugere-se 0 seguinte itinerario para o desenvolvimento do projeto.

1.

@

Avaliacdo do SRS e documentos de andlise adicionais, nomeadamente a proposta e 0
cronograma

Proposta de Alteracdo ao SRS e/ou documentos de analise adicionais
Reavaliagéo da proposta na eventualidade de existirem pontos a alterar
Acordo para o arranque formal da fase de Desenho, Desenvolvimento e Implementacao

164

