
MOD.IP. 108.R4.09.22

APPSOCKETS

Tiago Marques Soares Lima

Número: 50046

Instituto Superior de Tecnologias Avançadas do Porto

R. Dr. Lopo de Carvalho 4350-162 Porto

Portugal

Porto, 15 de junho de 2023

 MOD.IP. 108.R4.09.22

ii

 MOD.IP. 108.R4.09.22

iii

APPSOCKETS

Tiago Marques Soares Lima

Número: 50046

Trabalho realizado no âmbito da unidade curricular de

Projeto, da Licenciatura em Engenharia Informática, do

Instituto Superior de Tecnologias Avançadas do Porto,

orientado pelo Dr. João Rebelo.

Instituto Superior de Tecnologias Avançadas do Porto

Portugal

Porto, 15 de junho de 2023

 MOD.IP. 108.R4.09.22

iv

 MOD.IP. 108.R4.09.22

v

“A vontade de vencer, o desejo de ter sucesso, o impulso de alcançar

todo o seu potencial… essas são as chaves que abrirão a porta para a

excelência pessoal.”

“The will to win, the desire to succeed, the urge to reach your full

potential… these are the keys that will unlock the door to personal

excellence.”

Confúcio

 MOD.IP. 108.R4.09.22

vi

 MOD.IP. 108.R4.09.22

vii

RESUMO

Neste projeto foi desenvolvida uma aplicação para comunicação em soft real-time,

utilizando o sistema de comunicação Publish/Subscribe, com o propósito de substituir um

sistema previamente em utilização. Utilizando as tecnologias gossip, hash ring e gRPC, foi

criada uma aplicação distribuída e horizontalmente escalável, que é capaz de substituir o

sistema anterior na empresa NAPPS, enquanto mantém todas as suas funcionalidades.

Este projeto foi desenvolvido na modalidade de projeto inovador na empresa NAPPS, este

enquadra-se na área de especialização de Desenvolvimento/programação (Sistemas de

informação, Web e Móvel). Adicionalmente, este projeto permitiu a utilização dos

conhecimentos técnicos e teóricos adquiridos ao longo do curso, no desenvolvimento de um

projeto cuja aplicação prática permite validar todos os ensinamentos que foram aprendidos,

durante a Licenciatura em Engenharia Informática, concluindo assim esta etapa tão importante

do meu percurso académico.

Palavras-chave: Soft Real-Time, Publicar/Subscrever, WebSockets, Message Broker.

 MOD.IP. 108.R4.09.22

viii

ABSTRACT

In this project, an application for soft real-time communication was developed using the

Publish/Subscribe communication system, with the purpose of replacing a previously used

system. Using gossip, hash ring, and gRPC technologies, a horizontally scalable distributed

application was created, which is capable of replacing the previous system at NAPPS while

maintaining all of its functionalities.

This project was developed as an innovative project within the specialization area of

Development/Programming (Information Systems, Web, and Mobile) at NAPPS. Additionally,

this project allowed for the application of the technical and theoretical knowledge acquired

throughout the course, in the development of a project whose practical application validates all

of the teachings that were learned during the Bachelor's degree in Computer Engineering, thus

completing this important stage of my academic journey.

Keywords: Soft Real-Time, Publish/Subscribe, WebSockets, Message Broker.

 MOD.IP. 108.R4.09.22

ix

AGRADECIMENTOS

Em primeiro lugar, gostaria de agradecer à minha família pelo apoio incansável durante todo

o meu percurso académico. Por diversas vezes contribuíram positivamente para o meu

desempenho interagindo e questionando as opções tomadas.

Agradeço ao Professor Engenheiro João Rebelo, o meu orientador de projeto e coordenador

do projeto final pela sua recetividade, apoio, orientação e gentileza que sempre demonstrou ao

longo de toda a licenciatura e, em especial no desenvolvimento deste projeto.

Da mesma forma, gostaria também de agradecer a todos os docentes e não docentes que

fizeram parte do meu percurso na licenciatura do ISTEC Porto.

Um especial agradecimento aos colegas de curso Gonçalo Nogueira que me acompanhou

em todo o meu percurso académico.

Não esquecendo os meus colegas na NAPPS por todo o companheirismo que tanto me

fizeram evoluir a nível pessoal e profissional

.

 MOD.IP. 108.R4.09.22

x

ÍNDICE GERAL

RESUMO .. vii

ABSTRACT .. viii

AGRADECIMENTOS ... ix

ÍNDICE DE FIGURAS.. xiii

ÍNDICE DE TABELAS ... xv

LISTA DE SIGLAS E ACRÓNIMOS .. xvi

GLOSSÁRIO .. xvii

PARTE I – RELATÓRIO DE PROJETO... 1

1 INTRODUÇÃO .. 1

1.1 Enquadramento e Motivação ... 1
1.1.1 Enquadramento de empresa .. 1
1.1.2 Motivação ... 1
1.1.3 Problemas ... 3

1.2 Objetivos ... 5

1.3 Estrutura do Relatório .. 5

2 ESTADO DA ARTE .. 6

2.1 Evolução de comunicação em tempo real .. 6

2.2 Soluções existentes ... 9

2.3 Solução personalizada ... 13

3 METODOLOGIA .. 15

3.1 Tarefas .. 15

3.2 Cronograma ... 17

4 DESENVOLVIMENTO .. 18

4.1 Princípio de funcionamento .. 18

4.2 Alternativa à aplicação NATS .. 20
4.2.1 Centralização do channel .. 21

4.3 Consenso ... 24
4.3.1 Raft.. 25
4.3.2 Gossip ... 26
4.3.3 Escolha de protocolo de consenso .. 30

4.4 Intercomunicação .. 31

4.5 Distribuição .. 32
4.5.1 Hashing ... 32
4.5.2 Distributed Hash Table ... 32
4.5.3 Hash Ring ... 34
4.5.4 Consistência Eventual ... 36

4.6 Novo sistema ... 37

4.7 Funcionamento .. 39
4.7.1 Inicializar .. 39
4.7.2 Hub ... 40

 MOD.IP. 108.R4.09.22

xi

4.7.3 Channel Rules ... 43
4.7.4 Channel ... 44
4.7.5 Namespace .. 50
4.7.6 Regras de Channel, Namespace e de Hub .. 51
4.7.7 Auth Provider .. 51
4.7.8 Session .. 51

4.8 Métricas .. 57
4.8.1 Dashboard .. 58
4.8.2 Testes .. 60
4.8.3 Clientes ... 62
4.8.4 Protocolo ... 62
4.8.5 Gestão de Sessão ... 63
4.8.6 Escalabilidade futura... 63

4.9 Diagramas .. 64
4.9.1 Engine ... 66
4.9.2 ClusterNodeManager.. 67
4.9.3 ChannelProcessor ... 68
4.9.4 Hub ... 69
4.9.5 Session .. 69
4.9.6 ChannelListener .. 70
4.9.7 Fluxograma de subscrição .. 70

5 DISCUSSÃO DE RESULTADOS .. 74

6 CONCLUSÃO .. 79

PARTE II – ARTIGO CIENTÍFICO .. 80

I. Introdução .. 80
A. Motivação ... 80

II. Objetivos ... 81

III. Estado da Arte ... 81
A. Evolução de comunicação em tempo real .. 82
B. Soluções existentes ... 83
C. Solução personalizada ... 86

IV. Metodologia .. 87
A. Tarefas .. 87

V. Desenvolvimento .. 88
A. Consenso ... 89
B. Raft ... 90
C. Gossip ... 91
D. Escolha de protocolo de consenso ... 93
E. Intercomunicação .. 93
F. Distribuição .. 94
G. Hash Ring ... 94
H. Novo Sistema .. 95
I. Inicializar ... 95

VI. VI. Referências ... 99

BIBLIOGRAFIA.. 101

APÊNDICE A ... 103

APÊNDICE B ... 103

APÊNDICE C ... 104

APÊNDICE D ... 104

 MOD.IP. 108.R4.09.22

xii

APÊNDICE E ... 104

APÊNDICE F ... 105

APÊNDICE G... 115

APÊNDICE H... 119

 MOD.IP. 108.R4.09.22

xiii

ÍNDICE DE FIGURAS

Figura 1 - Diagrama de Gantt .. 17
Figura 2 - Sistema anterior ... 18
Figura 3 - Intercomunicação com NATS ... 19
Figura 4 - Ineficiência na intercomunicação com a aplicação NATS 20
Figura 5 - Intercomunicação direta .. 21

Figura 6 - Transmissão de mensagens ... 22
Figura 7 - Transmissão com Redis... 23
Figura 8 - Channel centralizado ... 24
Figura 9- Exemplo de cluster a utilizar protocolo gossip. ... 27
Figura 10 - Exemplo de propagação .. 28

Figura 11- Membros do cluster representados num anel virtual.. 35

Figura 12 - Anel virtual com membros de um cluster e channels ... 35
Figura 13- Anel virtual com membros de um cluster e channels com a falha de um membro 36

Figura 14 - Exemplo de funcionamento parte 1 ... 38
Figura 15 - Exemplo de funcionamento parte 2 ... 39
Figura 16 - Flow de subscrição do cluster ... 65

Figura 17 - Diagrama de classes .. 66
Figura 18 - Diagrama do Engine .. 67
Figura 19 - Interface ClusterNodeManager ... 68

Figura 20 - Interface do ChannelProcessor .. 69
Figura 21 - Diagrama do Hub .. 69

Figura 22 - Diagrama da Session ... 70
Figura 23 - Interface do ChannelListener .. 70
Figura 24 - Subscrição a um channel local .. 71

Figura 25 - Subscrição a um channel remoto... 72

Figura 26 - Função de subscrever a um channel .. 73
Figura 27 - Tempo médio de redistribuição no cluster em milissegundos (Adicionar) 75
Figura 28 - Tempo médio de redistribuição no cluster em milissegundos (Remover) 76

Figura 29 - Distribuição de sessões por hora ... 77

Figura 30 – Média de duração de sessão por hora ... 78
Figura 31 - Exemplificação da ineficiência da intercomunicação com a aplicação NATS 89
Figura 32 - Exemplo de cluster a utilizar o protocolo gossip .. 91
Figura 33 - Exemplo de propagação .. 91
Figura 34 - Membros do cluster representados num anel virtual ... 94

Figura 35 - Anel virtual com membros de um cluster e channels ... 94
Figura 36 - Anel virtual com membros de um cluster e channels com a falha de um membro

.. 95

Figura 37 - Tempo médio de redistribuição no cluster em milissegundos (Adicionar) 97
Figura 38 - Tempo médio de redistribuição no cluster em milissegundos (Remover) 97
Figura 39 - Distribuição de sessões por hora ... 98
Figura 40 - Média de duração de sessão por hora .. 98

Figura 41- Página inicial do dashboard ... 105
Figura 42- Página de topografia do dashboard, parte 1 ... 106
Figura 43- Página de topografia do dashboard, parte 2 ... 107
Figura 44- Página de topografia parte 2 ampliada ... 107
Figura 45- Página de topografia do dashboard, parte 3 ... 108
Figura 46 - Página de topografia parte 3 ampliada .. 109
Figura 47- Página de métricas do dashboard, channels ativos... 110

 MOD.IP. 108.R4.09.22

xiv

Figura 48- Página de métricas do dashboard, sessões ativas ... 110

Figura 49- Página de métricas do dashboard, hubs ativos ... 111
Figura 50 - Página de métricas do dashboard, mensagens enviadas comparadas com

mensagens recebidas .. 111
Figura 51- Página de métricas do dashboard, bytes enviados comparados com bytes recebidos

.. 112
Figura 52- Página de métricas do dashboard, sessões por dia ... 112
Figura 53- Página de métricas do dashboard, média de duração de sessão por dia 113
Figura 54 - Página de teste de sessão ... 113
Figura 55 - Página de teste de sessão, detalhes de sessão .. 114

Figura 56- Página de teste de sessão, histórico de conexão ... 114
Figura 57 - Página de teste de sessão, histórico de channel ... 115

 MOD.IP. 108.R4.09.22

xv

ÍNDICE DE TABELAS

Tabela 1- Membros num cluster e seus índices ... 33
Tabela 2- Mapeamentos de channels para membros de um cluster com n = 3 33
Tabela 3- Mapeamentos de channels para membros de um cluster com n = 2 34

 MOD.IP. 108.R4.09.22

xvi

LISTA DE SIGLAS E ACRÓNIMOS

AMQP – Advanced Messaging Queuing Protocol

APNS – Apple Push Notification Service

AWS – Amazon Web Services

B2B – Business to Business

DHT – Distributed Hash Table

ECS – Elastic Container Service

FCM – Firebase Cloud Messaging

HTTP – Hypertext Transfer Protocol

IETF – Internet Engineering Task Force

JSON – JavaScript Object Notation

MQTT – Message Queuing Telemetry Transport

NATS – Neural Autonomic Transport System

OTP – Open Telecom Platform

SaaS – Software as a Service

SSE – Server-Sent Events

STOMP – Simple/Streaming Text Oriented Messaging Protocol

 MOD.IP. 108.R4.09.22

xvii

GLOSSÁRIO

Backoffice – O backoffice é a parte administrativa e de gestão de uma empresa que acontece

nos bastidores e é responsável por fornecer suporte e recursos para as atividades principais da

empresa, garantindo que as operações funcionem sem problemas e que os objetivos estratégicos

sejam alcançados.

Cluster – Um cluster é um grupo de computadores que trabalham juntos para realizar uma

tarefa ou fornecer um serviço específico. Esses computadores são conectados por meio de uma

rede e são geridos como se fossem um único sistema, o que permite uma maior capacidade de

processamento e de armazenamento de dados. Adicionalmente, clusters também podem ser

usados para fornecer serviços de alta disponibilidade, balanceamento de carga e tolerância a

falhas.

Dashboard – Um dashboard é uma interface visual que apresenta informações importantes e

fáceis de entender sobre um determinado conjunto de dados ou processo. Este ajuda a

monitorizar o desempenho de diferentes áreas ou processos de negócio de forma rápida e

eficiente, permitindo que os utilizadores tomem decisões informadas com base nos dados

apresentados.

Heartbeat – O termo heartbeat é utilizado para descrever um mecanismo de monitorização

que permite que um sistema verifique continuamente o estado de outro sistema ou componente,

através da troca regular de mensagens ou sinais entre os sistemas. Se o sistema não receber um

sinal de “batimento cardíaco” dentro de um intervalo de tempo definido, pode ser considerado

como inoperacional ou com falha, e medidas apropriadas podem ser tomadas para lidar com a

situação. O heartbeat é frequentemente utilizado em ambiente de alta disponibilidade ou em

sistemas distribuídos para garantir a confiabilidade e a disponibilidade dos sistemas.

Metadata – Metadata é um termo utilizado para descrever dados que fornecem informações

sobre outros dados. Em outras palavras, são dados que descrevem características, propriedades

ou atributos de um determinado conjunto de dados, como informações sobre a sua origem,

formato, data de criação, entre outros.

 MOD.IP. 108.R4.09.22

xviii

peer-to-peer – Peer-to-peer (P2P) é um modelo de comunicação descentralizado em que os

dispositivos ligados à rede, chamados de peers, comunicam diretamente entre si, sem a

necessidade de um servidor central. Cada peer na rede atua como um cliente e um servidor,

tornando a rede mais resiliente e independente, além de permitir uma maior escalabilidade.

Prometheus – Prometheus é uma ferramenta de monitoramento de código aberto utilizada para

coletar e armazenar métricas de sistemas e serviços. Este é muito utilizado em ambientes de

cloud e containers, sendo capaz de monitorar aplicativos distribuídos e escaláveis.

Pub/Sub – Pub/Sub, ou publish/subscribe, é um modelo de comunicação em que os

participantes se comunicam por meio de mensagens transmitidas por um intermediário

(broker). Neste modelo, os participantes são divididos em duas categorias: publishers e

subscribers. Publishers são responsáveis por enviar mensagens para o intermediário, enquanto

subscribers se inscrevem em determinados tópicos de interesse. Quando um publisher envia

uma mensagem, o intermediário envia a mensagem para todos os subscribers que estão

inscritos no tópico relevante. Este modelo é muito utilizado em sistemas distribuídos para

comunicação assíncrona e escalável entre diferentes partes do sistema, permitindo a

comunicação eficiente entre muitos participantes sem a necessidade de cada participante saber

com quem está a comunicar. O Pub/Sub é amplamente utilizado em aplicações de IoT (Internet

das Coisas), sistemas de mensagens e sistemas de eventos, permitindo que os participantes se

comuniquem de forma eficiente e escalável. Ao longo deste documento o nome PubSub ou

Pub/Sub será utilizado, tendo ambos o mesmo significado.

Rate Limit – O rate limit é uma forma de controlar a quantidade de pedidos que uma aplicação

pode fazer num determinado período. Por exemplo, se um serviço tem um rate limit de 100

pedidos por minuto, isso significa que um utilizador só poderá realizar 100 pedidos nesse

período. Caso este tente fazer mais que esses, estes serão impedidos.

Redis – Redis é uma base de dados em memória de código aberto, utilizado para armazenar

dados chave-valor. Este é rápido e escalável, adequado para aplicações que necessitam de alta

velocidade e baixa latência, como aplicações web, sistemas de mensagens e jogos online (Redis

Labs, s.d.).

 MOD.IP. 108.R4.09.22

xix

RPC – Remote Procedure Call (Chamada de Procedimento Remoto) é um protocolo de

comunicação entre diferentes sistemas de computação. É usado para permitir que um programa

em um dispositivo possa chamar uma função ou método em outro dispositivo através da rede,

como se essa função estivesse a ser executada localmente. O RPC é uma tecnologia muito

utilizada em sistemas distribuídos e é suportado por várias linguagens de programação e

plataformas. Este permite que diferentes sistemas operacionais e ambientes de rede se

comuniquem de forma transparente, tornando a programação e a integração de sistemas muito

mais fáceis.

Snapshot – Um snapshot é uma imagem instantânea ou cópia exata de um estado de um sistema

ou conjunto de dados em um determinado momento. Em outras palavras, é uma “fotografia”

do estado atual de um sistema ou conjunto de dados que pode ser armazenada e utilizada

posteriormente para referência, restaurar um sistema ou conjunto de dados em um estado

anterior.

Tenant – Um tenant refere-se a uma entidade, como uma organização ou utilizador, que possui

acesso e controle exclusivo sobre um conjunto de recursos dentro de um ambiente

compartilhado. O conceito de tenant é amplamente utilizado em serviços de computação em

nuvem, como Software como Serviço (SaaS), Plataforma como Serviço (PaaS) e Infraestrutura

como Serviço (IaaS), para garantir que várias entidades possam compartilhar recursos de forma

segura e eficiente.

Timestamp – Uma timestamp é uma informação que indica o momento em que ocorreu um

evento, como uma transação, uma alteração num documento ou a criação de um ficheiro.

Geralmente, é representada por uma sequência de caracteres que inclui a data e a hora em que

o evento ocorreu, seguindo um formato predefinido. A timestamp é útil para fins de

rastreabilidade e para garantir que as informações são sincronizadas e organizadas de forma

cronológica. Este podem ser representados em vários formatos, como ISO 8601 e Unix.

 MOD.IP. 108.R4.09.22

1

PARTE I – RELATÓRIO DE PROJETO

1 INTRODUÇÃO

Neste projeto é explicado a criação de infraestrutura para o envio de informação em soft

real-time entre clientes e servidores, e ao mesmo tempo substituir um sistema com objetivos

similares, mantendo o máximo de compatibilidade possível de forma a facilitar a migração para

o novo sistema.

1.1 Enquadramento e Motivação

Este projeto foi desenvolvido na empresa NAPPS, com o objetivo de resolver um problema

existente, e permitir que novas funcionalidades sejam desenvolvidas com o resultado do

desenvolvimento deste projeto. Assim sendo, será explicado o contexto em que a empresa

trabalha e a motivação para o desenvolvimento deste projeto.

1.1.1 Enquadramento de empresa

NAPPS é uma empresa startup SaaS (software como serviços) B2B (de empresa para

empresa) que desenvolve aplicações personalizáveis para dispositivos móveis, nomeadamente

para Android e IOS, que são vendidas como um serviço a lojas de e-commerce. Atualmente as

plataformas suportadas são Shopify e WooCommerce, no entanto, integrações com outros

plugins/apps nas plataformas também são alvo para integração nas aplicações. Neste contexto

de aplicações e-commerce, surgiu a necessidade de comunicar com as aplicações móveis de

forma quase instantânea sempre que a aplicação estiver em execução.

Para esse propósito, foi necessário criar infraestrutura para o envio de informação em tempo

real de forma bidirecional entre clientes e servidores. A infraestrutura não será exclusiva às

aplicações móveis, tornando possível a sua utilização por outros serviços que possam necessitar

de comunicação em tempo real.

1.1.2 Motivação

Este projeto consiste numa aplicação Publish/Subscribe com suporte para múltiplos tenants,

onde existem elementos que subscrevem a um tópico (Subscribe) e recebem todas mensagens

ou eventos publicados neste mesmo tópico (Publish).

O sistema criado ao longo deste projeto, tem como propósito substituir o sistema anterior

enquanto mantém todas as suas funcionalidades, adiciona novas funcionalidades e facilita a

sua utilização.

 MOD.IP. 108.R4.09.22

2

As motivações para o desenvolvimento deste novo sistema foram baseadas em alguns

pontos principais, sendo estes:

 O sistema a ser substituído não ser horizontalmente escalável;

 A não existência de ferramentas de monitorização e deteção de erros;

 Arquitetura não preparada para novas funcionalidades;

 Falta de testes no projeto.

O sistema a ser substituído, foi desenvolvido de forma rápida, e durante o seu

desenvolvimento não existia a necessidade de que este fosse horizontalmente escalável, e a

adaptação seria complicada exigindo modificar grande parte do seu funcionamento.

Inicialmente, este sistema foi projetado para ser utilizado maioritariamente por dashboards e

backoffices como subscritores enquanto alguns eventos eram emitidos por outros servidores.

No entanto, novas funcionalidades a serem planeadas necessitam que a utilização deste

sistema seja ampliada para a aplicações móveis, onde existe um valor muito mais elevado de

conexões a serem realizadas, de forma a quantificar a diferença de conexões esperadas, no

sistema a ser substituído era somente esperado ter no máximo 50 conexões diárias, um valor

muito baixo, enquanto o valor esperado para os utilizadores atuais é de aproximadamente 9000

conexões, um valor muito superior. Adicionalmente, sempre que se adquire um novo cliente, é

esperado que este valor suba entre algumas centenas a alguns milhares (aproximadamente entre

600 e 2000), sendo que o novo sistema tem de ser capaz de suportar este aumento de

utilizadores.

Outro ponto relacionado com a necessidade de escalar horizontalmente, consiste em permitir

que o sistema seja tolerante a falhas, algo que não é possível se somente um servidor puder ser

executado ao mesmo tempo. O motivo pelo qual o sistema não é horizontalmente escalável,

deve-se ao funcionamento geral de um sistema de comunicação PubSub, onde

independentemente do servidor a que o cliente está conectado, este tem de receber eventos que

podem ser enviados noutros servidores.

A inexistência de ferramentas de monitorização e de deteção erros dificulta a manutenção

do sistema, no entanto, sendo que nenhuma funcionalidade em que este era utilizada era

considerada crítica, não houve nenhum incentivo para desenvolver estas, no entanto, sendo que

este sistema passou a ser utilizado por clientes finais, é importante ser capaz de identificar os

erros o mais rápido possível, assim como ser capaz de monitorizar a sua utilização de forma a

planear o melhor possível o escalamento automático.

 MOD.IP. 108.R4.09.22

3

1.1.3 Problemas

No sistema a ser substituído, além dos pontos acima mencionados, existem outros problemas

ou inconveniências identificadas durante a utilização deste. Portanto, analisando o

funcionamento do projeto atual temos a seguinte informação.

Por cada tenant é criado um objeto App que contém um nome que é utilizado como

identificador único, estes têm de ser explicitamente criados previamente antes da sua utilização.

Assim que criado, a primeira conexão a um destes tenants um Hub é criado para gerir todas

conexões e channels (tópicos) deste tenant, tornando assim o Hub como o elemento que agrupa

conexões e tópicos de um tenant. Resumindo, temos a hierarquia de Hub gere várias conexões

e vários channels, sendo o objeto App apenas uma forma de criar um tenant.

Outros problemas encontrados atualmente são a necessidade de criar explicitamente cada

tópico individualmente. Sendo um sistema separado, manter a sincronização de quais tenants

estão ativos acaba por ser um problema na presença de falhas, quanto à necessidade de criar

tópicos explicitamente dificulta em casos onde o número de tópicos é dinâmico e a necessidade

de criação aumenta a complexidade de gestão. Por exemplo, caso seja necessário um tópico

para cada produto, seria necessário criar um número elevado de tópicos, e para piorar a

situação, muitas vezes os produtos apresentam variações dos mesmos (Exemplo: Camisola

versão azul, versão vermelha e versão verde), sendo necessário criar tópicos para cada variação.

Por fim quando um produto fosse apagado seria necessário voltar a apagar os tópicos por cada

variante.

 De forma a evitar este problema é necessário que a criação de cada tópico seja de forma

dinâmica, evitando explicitamente a criação deste permitindo ter configurações num grupo de

tópicos e apenas opcionalmente para cada tópico explicitamente, quanto à criação de tenants

estes também podem ser opcionalmente dinâmicos com configurações por defeito de forma a

evitar acessos não autorizados.

Outros problemas menores passam por não permitir conexões não autenticadas, sendo que

é sempre necessário um token de acesso (objeto JSON compacto assinado) para iniciar uma

conexão, mas em alguns cenários esta exigência dificulta o processo. Voltando ao exemplo de

produtos, caso uma aplicação cliente necessite ser notificado das alterações de stock de um

produto e o utilizador não tenha uma conta, este tem de pedir a um servidor um token de acesso

como utilizador anónimo, e só após poderá se conectar e subscrever ao tópico de stock do

produto.

 MOD.IP. 108.R4.09.22

4

 Adicionalmente, atualmente para autenticar ou mudar o token de acesso é necessário

desconectar e reconectar com o novo token de acesso criando um período onde atualizações

não são recebidas.

Neste sistema, a capacidade de rastreamento de presenças apresenta algumas falhas quando

o servidor é desligado devido a uma falha, este não é capaz de corrigir o estado das presenças

armazenadas, sendo necessário intervenção manual para corrigir o problema.

Tendo brevemente apresentado o projeto atualmente em produção e os seus problemas, estes

são os pontos a ter em consideração no planeamento do novo projeto:

 Restringir o acesso a tópicos de acordo com as configurações ou autorizações;

 Configurações dos tópicos devem permitir configurar:

o O armazenamento das mensagens enviadas;

o O rastreamento da presença no tópico;

o Definir um tópico como público ou privado, permitindo que este seja acedido

por conexões anônimas caso seja público;

o Permitir ou não anónimos mesmo que o tópico seja público.

 Criação dinâmica de tópicos;

 Agrupamento de tópicos, tendo uma configuração aplicada a todos os tópicos

presentes no grupo, e que a sua alteração seja refletida nos mesmos.

 Permitir que o cliente esteja autenticado ou não, permitindo autorizações extras caso

este esteja autenticado;

 Suporte para múltiplos tenants, possivelmente a criação destes de forma dinâmica;

 Rastrear a presença dos utilizadores em cada tópico;

 De preferência ser capaz de enviar mensagens na mesma ordem que a infraestrutura

recebeu;

 Ser capaz de escalar horizontalmente;

 Permitir comunicação com serviços internos via NATS;

 Envio de mensagens autorizadas para uma stream no NATS.

 MOD.IP. 108.R4.09.22

5

1.2 Objetivos

Tendo sido explicado os problemas que levaram a desenvolver um novo sistema, é

necessário definir os objetivos a serem cumpridos pelo novo sistema, lembrando que o novo

sistema vai substituir um existente, é necessário que este seja capaz de suportar os casos de uso

atuais, assim como criar o máximo de compatibilidade possível. Portanto, sendo os

requerimentos do novo sistema similares com o anterior em produção, é necessário analisar

como o atual funciona e ver que problemas apresenta. Os principais pontos a ter em conta no

projeto são:

 Comunicação bidirecional entre cliente e servidor através WebSockets;

 Comunicação utilizando Pub/Sub (publicar e subscrever) em tópicos (nomeados de

channels);

 Restringir o acesso a tópicos de acordo com as autorizações;

 Suporte para múltiplos tenants, existindo configurações por cada tenant;

 Criação explícita de tópicos e com configurações por cada;

 Rastreamento da presença dos clientes em cada tópico;

 Armazenamento das mensagens enviadas em cada tópico.

1.3 Estrutura do Relatório

O presente relatório está organizado em 6 capítulos onde é abordado todo o processo de

planeamento e de desenvolvimento do projeto.

Capítulo 1 – Introdução ao projeto, contextualização do tema e motivação para o

desenvolvimento da plataforma;

Capítulo 2 – Estado da Arte, explicação de métodos de comunicação em aplicações web,

e apresentação de tecnologias existentes e serviços;

Capítulo 3 – Metodologia e planeamento do projeto;

Capítulo 4 – Desenvolvimento do projeto, explicação de partes principais do projeto,

escolha de tecnologias a ser utilizados, funcionamento de componentes do projeto e

ferramentas criadas;

Capítulo 5 – Discussão de resultados obtidos;

Capítulo 6 – Conclusão do desenvolvimento do projeto e apresentação das reflexões.

 MOD.IP. 108.R4.09.22

6

2 ESTADO DA ARTE

Nesta parte vai ser mencionado técnicas utilizadas para enviar informação em tempo real

tem evoluído, protocolos que tenham vindo a ser criados e qual foi o escolhido para este projeto.

Adicionalmente, são selecionados projetos de código aberto e serviços comerciais que podem

potencialmente ser utilizados de forma a tentar a cumprir os objetivos deste projeto.

2.1 Evolução de comunicação em tempo real

Comunicação em tempo real não é um tópico novo e está presente em várias aplicações,

principalmente em aplicações de mensagens, no entanto, em aplicações web nem sempre

existiu uma forma de criar uma ligação bidirecional entre cliente e servidor. Sendo necessário

que aplicações web tenham a possibilidade de realizar uma comunicação com os servidores

primeiro é necessário conhecer as opções existentes e como estas foram evoluindo.

Inicialmente, em aplicações Web não existia a possibilidade de criar ligações bidirecionais

com servidores utilizando as APIs fornecidas pelos browsers, de forma a resolver esta

limitação, em 2011 um novo protocolo foi padronizado Fette e Melnikov (2011) como RFC

6455, este protocolo ficou conhecido como WebSockets e é atualmente a forma padrão de

comunicação bidirecional com servidores em aplicações Web. Em outras aplicações não web,

estas limitações não existiam, portanto cabia a cada desenvolvedor utilizar a sua

implementação ou reutilizar uma existente.

Antes da criação do protocolo WebSockets, a técnica long polling era uma forma comum de

simular comunicação bidirecional, assim como mencionado pela Internet Engineering Task

Force (2011), “web applications that need bidirectional communication between a client and a

server [...] has required an abuse of HTTP to poll the server for updates while sending upstream

notifications as distinct HTTP calls” (The WebSocket Protocol) (capítulo 1.1, 1º parágrafo),

visto que os pedidos HTTP funcionam como request-reply (pergunta-resposta) de forma

unidirecional (cliente para servidor), não existia forma de um servidor notificar o utilizador

que um evento tenha acontecido no momento, ou seja, uma aplicação cliente teria que

periodicamente realizar um pedido HTTP ao servidor de forma a verificar que novos eventos

tenham ocorrido. Tendo como exemplo uma aplicação de chat, onde existem largos períodos

sem atividade, é possível que grande parte destes pedidos não tenham informação nova

desperdiçando recursos, ou então, caso o período entre pedidos seja longo é possível que

demore demasiado tempo para receber nova informação. Utilizando o mesmo exemplo, numa

 MOD.IP. 108.R4.09.22

7

conversa entre duas pessoas e com intervalo entre pedidos de 5 segundos, uma mensagem pode

demorar até esse mesmo intervalo só para ser recebida pela outra pessoa.

De forma a evitar a quantidade de pedidos realizados e a reduzir o tempo que demora a

receber informação, o servidor artificialmente demora mais tempo para enviar uma resposta,

esperando que exista nova informação ou que tempo limite de conexão tenha sido atingido.

Esta parte é a origem do nome Long na técnica Polling. Desta forma, o tempo de atraso a

receber a mensagem seria no máximo o tempo de receber a última resposta mais o tempo de

iniciar um novo pedido, algo que poderia demorar segundos que passou para milissegundos,

além de reduzir consideravelmente a quantidade de pedidos a serem feitos.

Com a criação do protocolo WebSockets, a técnica long polling deixou de ser usada em

novos projetos e serve como alternativa caso uma conexão WebSocket não seja possível. No

entanto, embora WebSockets seja o padrão existem outras opções para permitir que o servidor

comunique com o cliente tais como: Server-Sent Events, Web Push e HTTP Streaming.

Server-Sent Events ou SSE, assim como definido por Roome e Yang (2020) no RFC 8895,

permite ao servidor enviar informação para o cliente por HTTP pela duração da conexão, ao

contrário do protocolo WebSockets, este somente permite uma comunicação unidirecional de

servidor para cliente, e não suporta o envio de informação em formato binário. Visto que este

protocolo somente permite o envio de informação de servidor para cliente, pedidos adicionais

têm de ser feitos caso o cliente precise de enviar informação para o servidor.

O Web Push, conforme definido por Thomson e Damaggio (2016) no RFC 8030, torna

possível o envio de informação para o cliente, no entanto, este costuma ser utilizado para o

envio de notificações e não de dados em geral, sendo as mensagens enviadas acompanhadas

por título, conteúdo, e exigem que os clientes aceitem uma permissão para receber esta

informação. Embora esta opção não seja adequada para envio de informação em tempo real,

esta pode servir como alternativa para o envio de informação quando é necessário que a

informação seja recebida mesmo que o cliente não esteja ligado a um dos servidores.

O HTTP Streaming é relativamente similar ao Server-Sent Events, este também permite o

envio de informação para o cliente de forma unidirecional. Este funciona enviando informação

sem tamanho definido, pondo a aplicação cliente constantemente à espera dos próximos dados

até a conclusão do pedido HTTP.

Tendo revisto os meios de comunicação disponíveis, o protocolo WebSockets aparenta ser

a melhor opção, principalmente por ser o protocolo padrão na indústria e pela sua capacidade

de comunicação bidirecional, no entanto, outros protocolos poderão ser implementados quando

a bidirecionalidade não for necessária, preferencialmente utilizando Server-Sent Events.

 MOD.IP. 108.R4.09.22

8

Escolhido o protocolo WebSockets, convém conhecer o seu funcionamento, assim como

mencionado previamente, este permite comunicação bidirecional entre cliente e servidor, esta

é estabelecida utilizando HTTP inicialmente que após um handshake é estabelecida. Este

protocolo é fundamentalmente dividido em duas partes: o handshake e a transferência de dados.

No handshake, o pedido é realizado pelo cliente enviando a intenção de transformar a

conexão unidirecional em uma bidirecional (com o nome de Upgrade no protocolo) ao qual o

servidor deverá responder que está a trocar o protocolo, após esta parte a conexão é considerada

estabelecida. Na transferência de dados, é usado o conceito de mensagens, sendo cada

composta por um ou mais frames. Cada frame tem um tipo associado, tendo cada frame

pertencente à mesma mensagem o mesmo tipo. De forma geral, existem 3 tipos de dados, sendo

textual, binário e de controle. No tipo textual a informação é interpretada como UTF-8

enquanto no tipo binário a interpretação é deixada à responsabilidade da aplicação, para o

controle, que não tem como objetivo transferir dados da aplicação, são usados como sinalização

da conexão, como por exemplo PING, PONG e CLOSE. Estes últimos PING e PONG tem

como propósito verificar se a conexão ainda se encontra ativa, principalmente quando a

aplicação envolve pouco tráfego. O transporte de mensagens numa conexão com protocolo

WebSocket é similar a uma conexão TCP, este apenas junta um mecanismo de framing que

reduz essa responsabilidade na aplicação, quanto ao formato dos frames não será mencionado

tendo em conta que não faz parte do objetivo deste documento.

 MOD.IP. 108.R4.09.22

9

2.2 Soluções existentes

Tendo em conta o protocolo escolhido e os pontos a serem considerados, foi realizada

pesquisa sobre soluções já existentes que suportam os pontos definidos e ao mesmo tempo

tentar perceber de que forma estas soluções estruturam as soluções e o que estas permitem.

Estas soluções incluem tanto projetos e bibliotecas de código aberto como serviços, as

principais soluções encontradas são as seguintes.

 Código aberto:

o Centrifugo;

o Mercure;

o Phoenix;

o VerneMQ;

o Emitter;

o HiveMQ;

o EMQX;

o SocketCluster;

o Soketi;

o Signal-R;

 Serviços:

o Ably;

o PubNub;

o Pusher;

o Fanout.

Deste conjunto existem algumas opções que funcionam como um broker de mensagens,

utilizando protocolos já existentes como MQTT, deste conjunto temos os seguintes:

Centrifugo (s.d.) é uma aplicação que serve como um broker de mensagens. Esta aplicação

suporta a distribuição de mensagens com os protocolos WebSockets e gRPC e com o envio de

mensagens por pedido HTTP. É possível de escalar horizontalmente utilizando através da

utilização de um dos engines suportados pela aplicação. De forma a permitir que os clientes

possam enviar mensagens, estes precisam de uma autorização extra criada por servidores, ou

que estes sirvam como intermediários para o envio de mensagens.

 MOD.IP. 108.R4.09.22

10

O Mercure (s.d.) é um broker de mensagens, com distribuição de mensagens utilizando SSE

(unidirecional) e com o envio de mensagens por pedido HTTP. A possibilidade de escalar

horizontalmente exige o uso de um serviço oferecido pelos desenvolvedores para a gestão da

infraestrutura. Sendo o protocolo de comunicação principal SSE este remove a possibilidade

de comunicação bidirecional, para que os clientes possam enviar mensagens, precisam de uma

autorização extra criada por servidores, ou que estes sirvam como intermediários para o envio

de mensagens.

O Phoenix Framework (s.d.) é um framework para a linguagem de programação Elixir, com

suporte para comunicação em tempo real e escalável horizontalmente. Sendo desenvolvido em

Elixir permite a utilização da Erlang VM, desenvolvida com suporte para tolerância a falhas e

maioritariamente utilizada em sistemas de telecomunicações tornando uma excelente escolha.

O protocolo de comunicação é utilizado é WebSockets e tem suporte para praticamente todos

os outros protocolos sendo WebSockets o principal. Infelizmente, Elixir ou Erlang são

linguagens ao qual não existe conhecimento interno para a sua utilização.

VerneMQ (Octavo Labs AG., s.d.), HiveMQ (HiveMQ, s.d.), EMQX (EMQ Technologies

Inc., s.d.) e Emitter (Emitter, s.d.) são tecnologias são baseadas no protocolo MQTT, embora

com algumas diferenças nas suas implementações, todas estas oferecem possibilidade de

escalar horizontalmente. A utilização do protocolo MQTT permite que a comunicação seja feita

diretamente por TCP ou WebSockets. O protocolo MQTT tem como meio de comunicação

principal Pub/Sub, no entanto, algumas funcionalidades extras podem a vir ser necessárias,

algo que podem ser implementadas utilizando tópicos no MQTT.

SocketCluster (SocketCluster, s.d.) é uma biblioteca de javascript que permite a

comunicação no formato de Pub/Sub e é capaz de escalar horizontalmente. Infelizmente a

documentação não é extensiva, principalmente quanto ao subprotocolo. Adicionalmente, esta

opção tem como objetivo primário servir como processador direto das mensagens recebidas,

enquanto o objetivo pretendido é somente a distribuição, mas é possível adaptar para o caso

necessário.

Soketi (s.d.) é um servidor de WebSockets compatível com o subprotocolo Pusher v7,

permitindo que clientes desenvolvidos para esta plataforma possam ser reutilizados,

adicionalmente, é capaz de escalar horizontalmente através da aplicação Redis.

 MOD.IP. 108.R4.09.22

11

Signal-R (Microsoft, s.d.) é uma biblioteca criada pela Microsoft que oferece a possibilidade

de comunicação em tempo real com clientes, esta biblioteca funciona somente em servidores

desenvolvidos em C# com a tecnologia ASP.NET. Esta opção é capaz de escalar utilizando a

aplicação adicional Redis ou um serviço desenvolvido pela Microsoft disponível na Azure

Cloud.

Desta lista de opções com código aberto a opção que mais se adequa é o framework Phoenix.

Este é desenvolvido em elixir que por sua vez é executado na Erlang VM, a qual tem acesso a

um conjunto de bibliotecas nomeadas de OTP (Open Telecom Platform) que facilita o

desenvolvimento de aplicações distribuídas. Adicionalmente esta linguagem é utilizada por

grandes plataformas como WeChat e WhatsApps, que servem como comprovativo para a sua

escalabilidade. No entanto, Elixir ou Erlang são linguagens ao qual não existe conhecimento

interno para a sua utilização.

Quanto à opção Mercure, esta não suporta o envio de mensagens bidirecionais, incluindo

de clientes não autenticados, este exige que outros servidores sejam capazes de enviar

mensagens pelos clientes ou que sirvam como meio de autenticação dos mesmos.

VerneMQ, HiveMQ, EMQX e Emitter são possíveis opções, no entanto estas ficam somente

pelo protocolo MQTT, no entanto funcionalidades adicionais além das definidas no protocolo

MQTT, teriam de ser desenvolvidas à parte, visto que o suporte para modificações é

relativamente reduzido.

A opção Soketi, apresenta dois problemas, primeiro ser desenvolvida em javascript que por

sua vez é executado em node.js, embora seja plataformas viáveis, este tipo de aplicação exige

processamento simultâneo e paralelismo, tendo em conta que o node.js é executado como um

processo de um único thread, este apresenta desvantagens quanto as outras possibilidades,

adicionalmente, para utilizar eficientemente os recursos disponíveis seria necessário várias

instâncias da mesma aplicação a correr em simultâneo com espaços de memória separados.

Por fim, Signal-R é uma boa opção para empresas que já usam C#, no entanto, este não é o

caso, adicionalmente, de forma a escalar horizontalmente a aplicação Redis pode ser utilizada,

mas o principal método é com um serviço desenvolvido pela Microsoft disponível na Azure

Cloud, algo que também não é usado internamente.

 MOD.IP. 108.R4.09.22

12

Quanto aos serviços, a maior parte destes oferecem uma plataforma para a comunicação em

tempo real, com suporte com vários protocolos e com escalabilidade gerida, no entanto, grande

parte destes tem limitações no número de conexões.

Ably (s.d.) é uma plataforma de mensagens Pub/Sub com garantia de envio, ordem de envio,

e com suporte para vários protocolos tais como MQTT, STOMP, AMQP, PUSHER e PubNub.

Permite conexões com os protocolos WebSockets, SSE e o envio de mensagens por HTTP.

Adicionalmente, permite o rastreamento da presença dos clientes, envio de notificações push,

oferece um histórico de mensagens e com suporte para restaurar desconexões abruptas.

PubNub Inc (2022) é uma plataforma de mensagens Pub/Sub sem garantia de envio ou

ordem de envio, os protocolos utilizados não são especificados, no entanto, segundo os

exemplos apresentados utilizam a técnica long-polling. Esta plataforma também permite o

rastreamento da presença dos clientes, envio de notificações push e processamento de

mensagens enviadas.

Pusher Ltd (s.d.) é uma plataforma similar às anteriores, funciona igualmente com

mensagens Pub/Sub mas sem garantia de ordem e envio. Esta utiliza conexões com o protocolo

WebSockets e sub-protocolo Pusher, um protocolo proprietário. Assim como as opções

anteriores também permite o rastreamento da presença dos clientes. Algumas funcionalidades

que não oferecem são um histórico de mensagens, recuperação de mensagens perdidas.

Notificações push são possíveis, mas fazem parte de um serviço à parte oferecido pela mesma

empresa.

Fanout (Fanout, s.d.) é uma que opção oferece tanto uma versão com código aberto quanto

um serviço. A opção de código aberto serve como um intermediário entre outros serviços onde

estes podem enviar atualizações para serem distribuídas pelos clientes, esta opção não é

horizontalmente escalável sem adaptação dos serviços para o envio de mensagens utilizando

um protocolo de comunicação ZeroMQ ou então publicando para todas as instâncias. A versão

de serviço, oferece mais funcionalidades, como organização de channels (equivalente a um

tópico) por realms (um elemento que agrupa channels). Ambas opções permitem conexões

com os protocolos WebSocket, SSE e long-polling. Ao contrário das opções anteriores, o

rastreamento da presença de clientes, envio de notificações push não suportadas,

adicionalmente o suporte para ordem e garantia de envio das mensagens é parcial.

 MOD.IP. 108.R4.09.22

13

Estas quatro opções, são plataformas que oferecem uma maior abstração aos sistemas

Pub/Sub, estas oferecem funcionalidades tipicamente não existentes em um message broker

tais como o rastreamento de presenças, envio de notificações push e histórico de mensagens.

Desenvolver estas funcionalidades em algumas das opções apresentadas que não as oferecem

necessitam modificações no projeto em si, algo que iria exigir familiaridade com o

funcionamento interno destes. Quanto às plataformas apresentadas, nomeadamente Ably,

PubNub, Pusher e Fanout, as que mais cumprem os pontos a ter em consideração são Ably,

Pusher e PubNub na ordem que melhor cumprem. Embora estas opções não tenham integração

com a aplicação NATS, seria possível adaptar para o que a plataforma oferece ou então

desenvolver uma ferramenta adicional que se realiza a conversão.

A plataforma Pusher quando falamos de meios de comunicação e funcionamento dos

mesmos, cumpre os requisitos, incluindo o rastreamento de presença através de tópicos

especializados para o caso, tópicos públicos e privados utilizando um prefixo no seu nome. No

entanto, nenhum dos tipos de tópicos tem a capacidade de armazenar um histórico de

mensagens. Outro problema comum em plataformas, que ocorre neste caso é o número de

conexões, cada loja tem a sua aplicação e o seu conjunto de clientes, e a empresa tem de estar

preparada para uma elevada quantidade de conexões em simultâneo, no caso do Pusher o plano

maior listado oferece no máximo 30 mil conexões, exigindo além disso negociar com a

empresa.

A plataforma PubNub, não estabelece conexões utilizando o protocolo WebSocket, em vez

disso utiliza pedidos HTTP e uma espécie de long-polling o custo de performance e energia

para as aplicações acabar por ser mais elevado, e não sendo uma conexão bidirecional este não

permite o envio bidirecional de mensagens, no entanto, todas outras funcionalidades estão

presentes.

Por fim, Ably é a plataforma que melhor cumpre os pontos previamente mencionados, esta

permite conexões por WebSockets e outros protocolos, rastreamento de presenças, garantia na

ordem e entrega de mensagens, armazenamento opcional das mensagens, e agrupamento de

tópicos permitindo um conjunto de tópicos ter a mesma configuração. No entanto, assim como

no Pusher o limite de conexões se mantém.

2.3 Solução personalizada

Após todas estas possibilidade terem sido analisadas, foi decidido desenvolver um novo

sistema em vez de reutilizar as opções mencionadas pelos seguintes motivos:

 MOD.IP. 108.R4.09.22

14

 Extensibilidade;

 Limites da API;

 Adaptação ao caso de uso;

 Imprevisão de custo;

 Conhecimento existente na empresa.

Muitos destes serviços oferecem sistemas simples de PubSub, no entanto, pouca

personalização além disso, sendo que caso seja necessário funcionalidades além das oferecidas

em conjunto com o sistema PubSub, é necessário as desenvolver num sistema separado. Por

exemplo, um sistema de presença em conjunto com meta dados sobre todos utilizadores

subscritos num tópico é uma funcionalidade que pode estar embutida num tópico, mas

desenvolver um sistema só para esta funcionalidade não é prático.

Dentro de todos serviços apresentados, o que mais se destacou por ser o mais próximo de

atender a todos requisitos é o serviço Ably, no entanto, assim como os serviços em geral

apresenta limites na utilização da sua API, como por exemplo, limites de eventos num tópico

por segundo e máximo de utilizadores subscritos num channel. Adicionalmente, sendo o

número de conexões um valor que flutua bastante, assim como o número de eventos enviados

para tópicos, prever os custos dos serviços torna-se difícil e sem forma de implementar um teto

máximo

Quanto às opções de código aberto, muitas destas não cumprem os requisitos necessários,

sendo necessário adaptar os projetos e ter o custo extra de manutenção de manter o projeto

atualizado com novas funcionalidades implementadas no código base. De todas as opções, a

que melhor cumpre os requisitos necessários é o framework Phoenix, utilizando a tecnologia

presente na Erlang VM este permite criar um sistema distribuído, e adicionalmente o

framework Phoenix permite customizar o funcionamento dos tópicos. No entanto, este

framework utiliza as linguagens Elixir e Erlang, que são linguagem ao qual não existe

conhecimento interno para sua utilização.

Tendo esta informação em conta, a criação de um novo sistema foi o caminho decidido de

forma reutilizar o conhecimento existente da linguagem Go (The Go Programming Language,

s.d.) e ferramentas já utilizadas internamente como a aplicação NATS.

 MOD.IP. 108.R4.09.22

15

3 METODOLOGIA

Para levantamento de requisitos, foi usado como base o sistema já presente em produção,

visto que grande parte das suas funcionalidades são necessárias por outros serviços dentro da

empresa NAPPS. Estando a substituir um sistema em utilização internamente, já existe um

conhecimento prévio de problemas que existiam, ou melhorias desejadas. Portanto, utilizando

o feedback dos utilizadores do sistema, em conjunto com funcionalidades futuras previstas, foi

realizado um brainstorming onde se definiu o que o projeto precisava, assim como vai ser visto

ao longo deste documento.

3.1 Tarefas

O projeto está dividido em várias tarefas, algumas das tarefas vão envolver vários pontos

que serão descobertos ao longo da fase de pesquisa e possivelmente em adaptações a novas

funcionalidades. As tarefas definidas até ao momento são:

 Tarefa 1 – Pesquisa de possíveis soluções existentes e avaliação das mesmas;

 Tarefa 2 – Pesquisa do funcionamento das atuais soluções;

 Tarefa 3 – Elaborar funcionamento do projeto;

 Tarefa 4 – Avaliar possíveis problemas de migração para novo projeto;

 Tarefa 5 – Desenvolvimento de protótipo;

 Tarefa 6 – Teste de protótipo e avaliar possíveis problemas;

 Tarefa 7 – Corrigir possíveis problemas ou adaptar para possíveis utilizações;

 Tarefa 8 – Teste em Cloud (AWS);

 Tarefa 9 – Criação de testes para cobrir lógica de projeto;

 Tarefa 10 – Implementação em produção em fase de teste.

Após mencionadas as tarefas para realização, passo a elaborar o que cada constitui.

Na tarefa 1, é realizada uma pesquisa por possíveis soluções comerciais ou de código aberto

e análise rápida se estas podem cobrir os casos de utilização atual, na tarefa 2 após a eliminação

de soluções que não se adaptam aos casos de utilização, iremos verificar mais profundamente

o seu funcionamento, e como se comportaria em funcionalidades planeadas e custos para as

mesmas. Utilizando o conhecimento do funcionamento obtido pelas tarefas 1 e 2, é elaborado

um plano geral com todas as funcionalidades necessárias e o seu funcionamento interno, após

esta será elaborado uma análise de problemas que possam existir ao realizar a migração do

 MOD.IP. 108.R4.09.22

16

projeto anterior para o atual, quanto menor o custo de migração menor será o tempo para

introduzir em produção e atualização de sistemas em produção, e esta etapa será a tarefa 4.

Após ter sido realizada uma análise do funcionamento e tendo sido verificado possíveis

partes problemáticas, é realizado o desenvolvimento de um protótipo do projeto como tarefa 5,

os testes mais manuais serão realizados e serão avaliados possíveis problemas que tenham

ocorrido, este passo corresponde à tarefa 6, para tarefa 7, será a correção dos erros que tenham

sido encontrados e adaptação para funcionalidades que tenham surgido ou adaptação das atuais.

Por fim, o funcionamento será testado na cloud AWS e o desenvolvimento de testes e

ferramentas de análise para ser possível inspecionar os funcionamento e erros que ocorram com

o projeto em funcionamento na cloud, e como última etapa o projeto será posto em produção,

mas em fase de teste com tráfego real, mas em componentes que não sejam críticos, estas três

partes serão as tarefas 8, 9 e 10.

 MOD.IP. 108.R4.09.22

17

3.2 Cronograma

O cronograma que representa as tarefas previamente definidas para o projeto é representado na seguinte forma, como na figura 1.

Figura 1 - Diagrama de Gantt

Fonte: Própria

 MOD.IP. 108.R4.09.22

18

4 DESENVOLVIMENTO

Neste capítulo são apresentadas as decisões que foram tomadas inicialmente,

nomeadamente a estrutura inicial e a utilização da aplicação NATS. Também é apresentado os

motivos que levaram a desconsiderar a aplicação NATS, assim como a alternativa que foi

implementada e por fim as funcionalidades existentes na aplicação.

4.1 Princípio de funcionamento

Portanto seguindo o sistema anterior, existe somente um servidor onde todos os clientes

estão conectados. Caso este servidor falhe, os clientes ficam sem forma de utilizar o serviço.

De forma a evitar que isso aconteça, é necessário adicionar mais servidores, assim caso um

falhe existem outros que podem receber as conexões. A isto nomeamos de ser horizontalmente

escalável, caso um servidor falhe ou não seja capaz de aguentar o número de clientes atual,

existem outros servidores para receber estes clientes.

No entanto, quando falamos num sistema PubSub é necessário que quando um evento é

publicado num tópico, este tem de ser transmitido para todos os clientes subscritos neste mesmo

tópico, independentemente a qual servidor estes estão conectados. Se olharmos para a figura 2,

temos os Servidores 1 e 2, e um cliente conectado a cada um. Estando ambos clientes subscritos

ao mesmo tópico é necessário que o evento que esta a ser publicado no servidor seja transmitido

para o Cliente 2, o que não acontece visto que o Cliente 2 não está conectado no mesmo

servidor que recebe o evento.

Figura 2 - Sistema anterior

Fonte: Própria

 MOD.IP. 108.R4.09.22

19

De forma a resolvermos este problema, tinha sido inicialmente planeado a utilização da

aplicação NATS, para realizar a intercomunicação entre os servidores.

O NATS.io (s.d.) é uma aplicação de mensagens de código aberto que fornece um sistema

de mensagens de alta performance e baixa latência. Este é usado principalmente para conectar

diferentes partes de um sistema distribuído, permitindo que as diferentes partes se comuniquem

e troquem informações de maneira eficiente e confiável. Inclusive, a aplicação é utilizada de

forma a ter outros serviços a comunicar com a aplicação desenvolvida neste projeto, estes são

considerados serviços autenticados que podem utilizar uma API similar à de administração.

Desta forma, o evento publicado pelo Cliente 1 é transmitido pelo NATS para todos os

servidores interessados no tópico, assim como pode ser visto na figura 3.

Figura 3 - Intercomunicação com NATS

Fonte: Própria

Com esta solução, foi observado um problema com a utilização do NATS, sendo este a

ineficiência introduzida na passagem de um evento, principalmente quando é aumentado o

número de servidores em funcionamento.

Na figura 4, existem 3 servidores e 3 instâncias da aplicação NATS. Existe um número mais

elevado de servidores de forma a ter redundância em caso de falhas e de forma a ser capaz de

receber um maior número de conexões. Nesta figura temos o Cliente 1 que publica um evento

que tem de chegar aos Servidores 2 e 3, para isso, assim que o Servidor 1 receba o evento

 MOD.IP. 108.R4.09.22

20

publicado pelo Cliente 1, este tem de enviar o evento para o NATS 1, que por sua vez envia

para o NATS 2 e 3 que por fim enviam aos Servidores 2 e 3. Portanto, foi necessário que o

evento fosse passado 5 vezes por rede, relembrando que cada passagem exige a codificação da

mensagem por quem envia e descodificação por quem recebe.

Figura 4 - Ineficiência na intercomunicação com a aplicação NATS

Fonte: Própria

4.2 Alternativa à aplicação NATS

De forma a evitar esta ineficiência, podemos ter os servidores a comunicar entre si em vez

de utilizar a aplicação NATS como intermediário. Para isso, é necessário implementar algo que

seja capaz de substituir a utilização da aplicação NATS, ou seja, é necessário resolver os 3

seguintes pontos:

• Consenso;

• Intercomunicação;

• Distribuição.

 MOD.IP. 108.R4.09.22

21

O consenso consiste em ter conhecimento de quais servidores estão ativos. A utilização da

aplicação NATS evitava esta necessidade, afinal os eventos eram publicados no NATS e este

iria distribuir o evento por quem está interessado. A intercomunicação consiste no envio de

informações e eventos entre os servidores. A distribuição consiste em como os tópicos ou

channels são distribuídos pelos servidores.

Se os servidores forem capazes de se comunicarem entre si, então o número de vezes que

um evento tem de ser enviado por rede diminui, assim como pode ser observado na seguinte

figura 5.

Figura 5 - Intercomunicação direta

Fonte: Própria

Antes explicar como os 3 pontos mencionados foram resolvidos, será explicado o porquê

de ser atribuído um conjunto de channels a um servidor de forma a que se torne mais claro o

porque do ponto “distribuição”.

4.2.1 Centralização do channel

Portanto, se seguirmos o modelo anterior, onde sempre que um evento é publicado este é

enviado para todos os servidores, iremos aumentar o número de vezes que um evento é enviado

por rede, assim como podemos enviar eventos para servidores que não têm interesse no evento.

 MOD.IP. 108.R4.09.22

22

De forma a exemplificar, temos a figura 6 onde existem 6 servidores, cada um com um cliente

conectado, e todos estes subscritos ao mesmo tópico ou channel.

Imaginando que todos os clientes querem publicar um evento no mesmo channel, cada um

dos servidores vai ter que enviar o evento recebido pelo cliente para todos os outros servidores.

Portanto cada servidor envia 5 mensagens, com 6 servidores são 30 mensagens enviadas como

pode ser visto na mesma figura na parte de baixo.

Figura 6 - Transmissão de mensagens

Fonte: Própria

Caso um dos servidores não tenha interesse nos eventos enviados, assim que receber o

evento, irá descartá-lo, ou seja, uma mensagem enviada por rede que é desnecessária.

Para enviar eventos apenas para servidores interessados no channel, cada servidor tem que

registar quais channels está interessado, para isso, a aplicação Redis pode ser utilizada,

lembrando que também tem que existir várias instâncias da aplicação Redis de forma a ter

redundância.

Portanto, por cada vez um evento é publicado, o servidor tem de consultar a aplicação Redis

de forma a saber para quais servidores deve enviar o evento, assim como na figura 7.

 MOD.IP. 108.R4.09.22

23

Figura 7 - Transmissão com Redis

Fonte: Própria

Embora este método permita evitar enviar mensagens desnecessárias, a necessidade de ter

de consultar outra aplicação externa por rede por cada evento publicado pode aumentar

consideravelmente a latência do envio de mensagens, e caso a aplicação Redis apresente falhas

o sistema em geral vai apresentar falhas.

Um método alternativo, consiste em atribuir a um servidor a responsabilidade de gerir um

conjunto de channels, ou seja, para publicar um evento num channel, este tem de ser enviado

para o servidor responsável pelo channel. Desta forma conseguimos manter uma ordem no

envio de eventos assim como reduzimos a complexidade do envio de eventos e evitamos ter

que consultar uma aplicação externa por cada evento publicado.

Voltando ao exemplo anterior, que pode ser observado na seguinte figura 8, onde existem 6

servidores com um cliente conectado a cada, e todos clientes estão subscritos ao mesmo

channel e todos querem publicar um evento. Neste exemplo, vamos assumir que o responsável

pelo channel onde os clientes estão subscritos e pretendem publicar é o Servidor 1. Portanto,

os servidores 2 a 6 vão enviar o evento recebido pelos seus clientes para o Servidor 1 (5

mensagens), o Servidor 1 vai enviar os eventos publicados para os servidores 2 a 6, ou seja, 6

× 5 = 30 mensagens, tendo no total 35 mensagens enviadas por rede.

 MOD.IP. 108.R4.09.22

24

Figura 8 - Channel centralizado

Fonte: Própria

É verdade que são mais mensagens transmitidas do que no exemplo anterior, no entanto, se os

servidores forem capazes de saber qual o responsável pelo channel evitam de ter de consultar

a aplicação Redis e ao mesmo tempo a complexidade do sistema em geral é reduzida.

Adicionalmente, caso os eventos sejam todos publicados ao mesmo tempo, estes podem ser

agrupados e enviados numa só mensagem, ou seja, em vez das 30 passariam para somente 5.

Voltando aos 3 pontos anteriormente mencionados, sendo estes:

 Consenso;

 Intercomunicação;

 Distribuição.

Iremos começar com o consenso, o que este é, que opções foram avaliadas e qual foi a

escolhida.

4.3 Consenso

O consenso é um dos problemas fundamentais em sistemas distribuídos, este exige que

múltiplos membros concordem em um conjunto de valores mesmo na presença de falhas. Um

protocolo de consenso que seja capaz de tolerar falhas deve cumprir as seguintes propriedades:

terminação, sendo que eventualmente todos membros concordam com um valor; integridade,

caso os membros proponham o mesmo valor, então outros devem decidir no mesmo valor;

concordância, todos membros devem concordar no mesmo valor. Algoritmos de consenso

tendem a confirmar um valor quando a maioria dos membros do cluster esteja disponível, por

exemplo, um cluster de 5 membros pode continuar a operar com a falha de dois membros, no

entanto, caso mais que dois falhem estes deixam de conseguir alterar os valores e somente

retornam os valores previamente acordados.

Portanto, o consenso em sistemas distribuídos é um processo em que vários membros de um

sistema distribuído trabalham em conjunto para tomar uma decisão em comum. Este processo

 MOD.IP. 108.R4.09.22

25

é necessário quando há vários componentes no sistema e é preciso chegar a um acordo sobre

qual ação deve ser tomada. Por exemplo, num cluster, é necessário que todos os membros

saibam qual membro é responsável por determinada tarefa ou quais dados estão disponíveis

em cada membro.

Para alcançar o consenso, os sistemas distribuídos utilizam algoritmos de consenso, como o

algoritmo Paxos ou o algoritmo Raft, que são projetados de forma a garantir que todos os

membros no sistema tenham a mesma visão dos dados e das ações a serem tomadas. Estes

algoritmos permitem que os membros elejam um líder ou coordenador que tomará as decisões,

enquanto os outros membros seguirão as instruções do líder.

O consenso em sistemas distribuídos é fundamental para garantir a consistência e a

integridade dos dados em todo o sistema. Neste são considerados os protocolos Raft e Gossip

como protocolos de consenso.

4.3.1 Raft

Raft é um algoritmo de consenso com propósito de ser simples de compreender, este é

equivalente ao algoritmo Paxos a nível de tolerância de falhas e desempenho. Este atinge o

consenso através de um e somente um líder eleito. Neste protocolo, cada membro tem o cargo

de líder ou seguidor e pode ser um candidato caso um líder não exista. O membro com o cargo

de líder tem a responsabilidade de replicar logs para os seguidores, adicionalmente, este

regularmente informa os seus seguidores da sua existência através do envio de um heartbeat.

Cada seguidor tem um ciclo de intervalos de tempo em qual espera receber um heartbeat do

líder que é reiniciado sempre que o receba, no entanto, caso o intervalo de tempo termine sem

o receber, então, o seguidor muda o seu cargo para candidato e começa uma eleição para um

novo líder. Portanto, o protocolo Raft está dividido fundamentalmente em duas partes: eleição

de líder e replicação de logs.

Quando o algoritmo inicializa ou um líder falha, um novo líder tem de ser eleito. Neste caso,

é iniciado um novo termo no cluster. Um termo é um período arbitrário no cluster para o qual

um novo líder precisa ser eleito, cada termo começa com a eleição de um novo líder. A eleição

de um líder é iniciada por um membro candidato, este aumenta o contador de termo, vota em

si mesmo como novo líder e envia uma mensagem para todos os outros membros a pedir o seu

voto. Cada membro só pode votar uma vez por cada termo, e estes votam a favor do primeiro

pedido de voto que receberam. Caso um candidato receba uma mensagem de outro membro

com um contador de termo superior então este é automaticamente desqualificado e muda o seu

 MOD.IP. 108.R4.09.22

26

cargo de volta para seguidor. Caso um membro receba a maioria de votos então este torna-se o

novo líder, caso exista um empate de votos então um novo termo é começado e o processo é

repetido, adicionalmente, de forma a evitar ciclos de empate de votos, cada membro escolhe

um intervalo de tempo aleatório, com valores reduzidos, antes de voltar a tentar a nova eleição.

Quanto à segunda parte, a replicação de logs, esta é a responsabilidade do líder, este recebe

pedidos de clientes, sendo que cada pedido consiste num comando a ser executado e replicado

por todos membros do cluster. Após o comando seja adicionado à lista de logs do líder, este

envia este comando para todos os seguidores. Caso os seguidores não estejam disponíveis, o

líder volta a tentar enviar o comando por vezes indefinidas até que o log seja eventualmente

adicionado à lista dos seguidores. Assim que o líder recebe a confirmação, de metade ou mais

dos seus seguidores, que o comando foi replicado, este aplica o comando ao seu estado local e

o pedido é considerado como aplicado.

Este protocolo é utilizado quando é necessário que exista uma forte consistência de

informações no cluster, sendo permitido apenas ao líder realizar alterações, um exemplo

comum de utilização deste protocolo pode ser encontrado nas bases de dados CockroachDB,

MongoDB, Neo4j, TiDB e YugabyteDB. Sendo que somente um membro do cluster é capaz de

realizar alterações, a capacidade do cluster é limitada pela capacidade do líder. De forma a

resolver este problema, é utilizado o Multi-Raft, este utiliza múltiplos grupos tendo cada um o

seu líder e gerindo uma secção da informação. No caso de uma base de dados, podemos ter um

grupo por cada tabela e aplicar alterações a grupos separados aumentando a quantidade de

alterações possíveis e distribuindo a carga entre mais membros. Adicionalmente, caso somente

seja necessário a consulta de informações, esta pode ser realizada a qualquer seguidor, com o

risco de receber informação desatualizada ou então realizar a consulta ao líder para ter a

garantia de ter a última informação.

4.3.2 Gossip

O protocolo gossip ou protocolo epidêmico consiste em um procedimento de comunicação

peer-to-peer que assimila a forma como as epidemias ou rumores se espalham, neste protocolo

cada membro de grupo periodicamente troca informação com outros membros sobre o seu

próprio estado e sobre o estado de outros membros. Este protocolo permite que um sistema

distribuído tenha a garantia que a informação é eventualmente distribuída por todos os

membros do grupo sem precisar de um sistema centralizado a coordenar esse aspeto. Visto não

precisar de um sistema centralizado este protocolo é dos mais robustos e escaláveis para

 MOD.IP. 108.R4.09.22

27

consistência eventual dos membros do cluster, deteção de falhas e permite o envio de

informações adicionais durante as trocas de informação.

Figura 9- Exemplo de cluster a utilizar protocolo gossip.

Fonte: Própria

Na figura 9 podemos ver um exemplo de um cluster com 5 membros, neste exemplo cada

membro comunica somente com outros 2 membros, assim como representado pelas setas. De

forma a propagar uma informação entre todos os membros seriam necessários 3 ciclos, sendo

cada ciclo uma troca de informação entre os membros após cada intervalo de tempo definido

no cluster. Uma exemplificação da propagação com origem no Node 1 pode ser observada na

figura 10.

 MOD.IP. 108.R4.09.22

28

Figura 10 - Exemplo de propagação

Fonte: Própria

No caso de um cluster com 40 membros e cada membro comunique somente com outros 4

membros seriam necessários somente 4 ciclos. O artigo "Epidemic Algorithms for Replicated

Database Maintenance" (Demers et al., 1987) descreve algoritmos de replicação de bases de

dados que usam a propagação de informações entre membros de um sistema distribuído, este

apresenta uma fórmula para estimar o tempo de convergência do algoritmo de propagação de

informações com base no número de membros do sistema e na taxa de propagação de

informações. Essa fórmula é 𝑇 = O(𝑙𝑜𝑔(𝑁) ∕ 𝑝), onde N é o número de membros do sistema

e p é a taxa de propagação de informações e O(𝑙𝑜𝑔(𝑁)) o número de ciclos necessários para

que a informação seja propagada por todo o sistema. Portanto, de forma a calcular

aproximadamente quantos ciclos são necessários para a propagação de uma informação, iremos

nos focar apenas na parte O(log(N)), desta forma, iremos utilizando o seguinte cálculo 𝐶 =

𝑙𝑜𝑔𝑃(𝑁) onde c é o número de ciclos.

Portanto, com 40 membros e propagação de 4 temos 𝑙𝑜𝑔4(40) = 2.66, ou seja,

aproximadamente 3 ciclos, no caso de um cluster com 5 membros e propagação de 2 temos

𝑙𝑜𝑔2(5) = 2.32 que também são aproximadamente 3 ciclos.

 MOD.IP. 108.R4.09.22

29

Vendo o protocolo de alto nível, num cluster, cada membro mantém uma lista de um

subconjunto dos membros a que tem conhecimento, os seus endereços e alguns dados

adicionais (metadata), e periodicamente, cada membro atualiza na sua lista de “vizinhos” os

contadores de heartbeat de acordo com os dados emitidos por outros membros e envia a

informação atualizada para alguns dos membros. Assim que um membro tenha recebido uma

das mensagens, esta junta a lista na mensagem com a sua lista e mantém os dados com o

contador de heartbeat mais elevado no caso de colisões. Assim sendo, enquanto o valor do

contador for subindo para um membro é garantido que este esteja healthy (ativo e sem

problemas) e é considerado unhealthy (desativo ou com problemas) caso o contador de

heartbeat não seja aumentado durante um intervalo de tempo. Adicionalmente, durante a troca

de informações entre membros é possível enviar informações extra como por exemplo, carga

média e memória livre para que outros membros possam utilizar essa informação para

balancear a carga entre membros. Outra forma de explicar o protocolo gossip é comparando

com a disseminação de rumores numa comunidade. Assim como no protocolo gossip, um

rumor começa com uma pessoa que o compartilha com alguns amigos próximos. Esses amigos,

por sua vez, compartilham o rumor com outros amigos, e assim sucessivamente. Conforme o

rumor se espalha, este pode ser confirmado, negado ou até mesmo modificado por diferentes

pessoas ao longo do caminho. O resultado é uma ampla disseminação de informações pela

comunidade, com a possibilidade de chegar a um consenso ou opinião comum. Da mesma

forma, o protocolo gossip permite a disseminação de informações em sistemas distribuídos,

onde diferentes membros compartilham e modificam informações entre si até chegarem a um

consenso ou estado comum.

No caso deste projeto, o protocolo gossip é baseado em "SWIM: Scalable Weakly-consistent

Infection-style Process Group Membership Protocol" (Das, Gupta & Motivala, 2002) com

algumas modificações. A implementação foi criada pela empresa Hashicorp e foi nomeada de

Serf. Explicando de forma breve e incompleta, um membro começa por se juntar a cluster já

existente ou cria um novo, caso se esteja a juntar, é realizada uma sincronização completa com

um membro já existente do cluster utilizado o protocolo TCP e depois começa a realizar trocas

de informação assim como referido previamente. Neste caso, a comunicação utilizada para

troca de informações utiliza o protocolo UDP com o número de propagação de intervalo

configurável. Nesta implementação é apenas enviado alterações de informação com o

protocolo UDP. Mesmo após um membro se juntar ao grupo algumas sincronizações completas

ocorrem com outro membro aleatório utilizando o protocolo TCP, no entanto, estas ocorrem

 MOD.IP. 108.R4.09.22

30

com menor frequência, o intervalo destas transmissões também pode ser configurado ou

desativado.

De forma a detetar uma falha, um pedido de verificação é enviado aleatoriamente num

intervalo de tempo configurável, caso o destinatário falhe a responder dentro de um prazo de

tempo razoável então um pedido de verificação é enviado indiretamente. Um pedido de

verificação indireto passa por pedir a um número configurável de membros para realizarem um

pedido de verificação ao membro, isto permite perceber se um membro não está acessível por

problemas que estejam a ocorrer na rede. Caso ambas tentativas falhem, então o membro é

marcado como suspeito e estas informações são enviadas para todo o cluster utilizado o mesmo

mecanismo de propagação. Por fim, caso o membro suspeito não responda à suspeita num

intervalo de tempo configurável então o membro é considerado como morto, e novamente esta

informação é propagada pelo cluster. Outra funcionalidade desta implementação passa por

permitir o envio de eventos e consultas utilizando o mecanismo de propagação, algo que pode

ser utilizado, por exemplo, quando a configuração do cluster muda e é necessário que esta

alteração seja propagada por todos os membros.

4.3.3 Escolha de protocolo de consenso

Tendo revisto as opções gossip e Raft, a opção escolhida para ser utilizada neste projeto

passa pelo gossip. Tendo como objetivo que todos membros concordem com quais membros

estão ativos, o algoritmo Raft oferece mais funcionalidades do que as necessárias e mais

restrições do que a opção gossip, adicionalmente, não sendo necessário armazenar informação

ou sendo exigido uma forte consistência de informação é preferível a utilização do protocolo

gossip sendo este mais eficiente no consumo de recursos de processamento e de rede e permite

uma quantidade mais elevada de membros sendo que o algoritmo Raft tem o seu melhor

desempenho num cluster com 3 a 9 membros enquanto em gossip um número muito mais

elevado é possível, por exemplo, em gossip um cluster com 100 membros e propagação de 4

leva aproximadamente 3 ciclos a propagar a informação.

A utilização de ambos protocolos em simultâneo também é possível, utilizando o protocolo

gossip de forma a manter uma lista de membros ativos, e utilizar o algoritmo Raft apenas para

gerir a consistência de informação, no entanto, como previamente mencionado, a utilização do

Raft limite consideravelmente o número de membros a serem utilizados num cluster.

Utilizando o gossip, é possível manter uma consistência eventual dos membros presentes no

cluster, e esta informação é somente utilizada de forma a realizar intercomunicação entre os

 MOD.IP. 108.R4.09.22

31

membros do cluster. Não tendo o protocolo gossip como objetivo de enviar informação de

forma rápida, será antes utilizada a informação que este gere para utilizar outro método de

envio de informação para o resto dos dados aplicacionais, adicionalmente, também é necessário

organizar os membros de forma a evitar e reduzir o número de vezes que uma mensagem tem

de ser transmitida.

4.4 Intercomunicação

De forma a realizar a intercomunicação entre membros existem várias possibilidades, no

entanto, as mais utilizadas são Apache Thrift, gRPC ou então usar diretamente uma conexão

TCP e gerir diretamente o envio de dados. De forma a simplificar e reutilizar conhecimento já

existente na empresa, o método de comunicação escolhido é o gRPC.

O gRPC é um framework de comunicação remota de alta performance, este permite que

aplicativos clientes e servidores troquem dados entre si de maneira rápida, confiável e eficiente,

utilizando protocolos de comunicação padronizados e uma interface de programação simples e

fácil de utilizar. O gRPC é baseado no protocolo HTTP/2, o que significa que este suporta

funcionalidades avançadas, como streaming bidirecional e unidirecional, compressão de dados

e multiplexação de pedidos. Este é frequentemente utilizado em sistemas distribuídos e em

arquiteturas baseadas em microserviços para facilitar a comunicação entre diferentes

componentes do sistema, outras funcionalidades deste framework podem ser consultadas no

apêndice A. De forma a serializar os dados enviados, o gRPC utiliza Protocol Buffers. O

Protocol Buffers (Google Developers, 2019) é uma tecnologia de serialização de dados também

desenvolvida pela Google, que permite que estruturas de dados sejam definidas em um formato

de linguagem neutra e compacta. Estas estruturas são então compiladas em código fonte para

várias linguagens de programação, o que permite que as aplicações cliente e servidor possam

facilmente trocar dados estruturados entre si. Adicionalmente, os dados serializados utilizando

Protocol Buffers são geralmente menores e mais rápidos de serem processados do que outros

formatos de serialização, como o JSON ou o XML. Por fim, o Protocol Buffers é amplamente

utilizado em sistemas distribuídos, aplicativos móveis e outras aplicações de alta performance.

Internamente o gRPC utiliza HTTP/2 e por consequência TCP, embora estes protocolos

sejam eficientes, o gRPC permite mudar o método de transporte utilizado, utilizando essa

funcionalidade, o transporte foi mudado para o protocolo KCP de forma a reduzir a latência da

comunicação em troca de ser produzido mais tráfego de rede. A utilização deste protocolo vai

ser utilizado de forma experimental. Caso seja encontrado algum problema então será revertido

 MOD.IP. 108.R4.09.22

32

para o transporte normal do gRPC. Adicionalmente, embora o protocolo utilize UDP este

garante o envio de mensagens para os destinatários assim como TCP, assim sendo, a perda de

informações não deverá ocorrer tal como se fosse utilizado o transporte por defeito do gRPC.

4.5 Distribuição

Tendo uma forma de saber quais membros estão presentes no cluster e forma de

comunicação entre cada membro, é necessário estabelecer a forma como estes serão

organizados. De forma a aumentar e evitar problemas de desempenho, o cluster não terá

nenhum membro central que terá toda a responsabilidade ou que irá atribuir responsabilidades,

em vez disso, cada membro vai ser responsável por um conjunto da carga a ser processada, e a

designação de qual membro tem qual responsabilidade vai ser definida através do hash ring.

Sendo um channel a parte onde irá ocorrer quase todo o processamento da aplicação, o nome

deste em conjunto o nome do hub vão ser utilizados como chave para distribuição.

4.5.1 Hashing

O hash consiste numa função que mapeia dados de entrada com um tamanho variável em

valor de saída de tamanho fixo, alguns exemplos comuns de algoritmos de hash incluem MD5,

SHA-1, SHA-256 e SHA-512. É possível utilizar uma função de hash de forma a mapear chaves

a valores numa tabela, onde a função de hash é utilizada para calcular um índice para a chave

que é utilizado para obter um valor armazenado numa tabela. As tabelas de hash são ideais para

armazenar informação que precisa ser acessada rapidamente. Neste caso, uma tabela de hash

poderia utilizar os identificadores dos membros como chaves, desta forma para calcular a qual

membro um channel pertence o seguinte cálculo pode ser efetuado:

𝑖𝑛𝑑𝑒𝑥 = ℎ𝑎𝑠ℎ(𝑐ℎ𝑎𝑛𝑛𝑒𝑙) 𝑚𝑜𝑑 𝑁

sendo index o membro, channel o identificador do channel e N o número de membros no

cluster. Existem alguns problemas relacionados com colisões que não serão mencionados.

4.5.2 Distributed Hash Table

Uma tabela hash distribuída, ou distributed hash table (DHT), é uma extensão à tabela hash

em que divide a informação em vários servidores. Esta utiliza um algoritmo de hash de forma

a distribuir as chaves pelos membros do cluster, atribuindo a cada membro a responsabilidade

de gerir um subconjunto das chaves e valores. Comparando com uma tabela de hash, a DHT

oferece maior escalabilidade e tolerância a falhas. O principal problema com a DHT neste

projeto, ocorre quando o número de membros do cluster é mudado, como por exemplo, devido

 MOD.IP. 108.R4.09.22

33

a uma falha, quando isso ocorre, todas as chaves têm de ser redistribuídas de forma a ter em

conta um membro a menos. Vendo novamente o cálculo anterior vemos que o valor de N

mudou, invalidando todos os cálculos previamente realizados. Recalcular todos os valores

impacta significativamente o desempenho do cluster, visto que a informação tem de ser movida

para os seus novos responsáveis, outro problema, é que embora somente um membro tenha

falhado, os responsáveis serão muito provavelmente diferentes do que eram previamente.

Vendo as tabelas 1 e 2, sendo a primeira a representação dos membros no cluster e a segunda

os membros atribuídos a cada channel vemos como a distribuição está a ser realizada, no

entanto, imaginando que o membro “Node 1” falha, o valor de N passa 2 e o índice dos

membros desce em 1. O membro atribuído a cada channel terá de ser recalculado, com

resultado como na tabela 3. Como pode ser observado, embora o balanceamento entre membros

fosse o resultado o esperado, também podemos observar que os channels "test:channel_um",

"test:channel_dois" e "test:channel_quatro" mudaram de responsável, mesmo estando o

membro responsável por estes, ainda operacional. Em poucos valores como neste exemplo, o

impacto seria negligível, mas em escalas de milhares e acima a redistribuição de todos estes

membros pode tornar um cluster inoperacional enquanto processa todas estas alterações.

Tabela 1- Membros num cluster e seus índices

Índice Membro

0 Node 1

1 Node 2

2 Node 3

Fonte: Própria

Tabela 2- Mapeamentos de channels para membros de um cluster com n = 3

Chave Hash Hash Mod N | N = 3

test:channel_um 12013487716029574172 2 (Node 3)

test:channel_dois 6072146722532578387 1 (Node 2)

test:channel_tres 5352869851951309179 0 (Node 1)

test:channel_quatro 6795858808070030270 2 (Node 3)

Fonte: Própria

 MOD.IP. 108.R4.09.22

34

Tabela 3- Mapeamentos de channels para membros de um cluster com n = 2

Chave Hash Hash Mod N | N = 2

test:channel_um 12013487716029574172 0 (Node 2)

test:channel_dois 6072146722532578387 1 (Node 3)

test:channel_tres 5352869851951309179 1 (Node 3)

test:channel_quatro 6795858808070030270 0 (Node 2)

Fonte: Própria

4.5.3 Hash Ring

Portanto, de forma a evitar este problema, temos a técnica de anel de hash, ou hash ring,

esta técnica forma um anel virtual (figura 11), em que cada membro é responsável por um

intervalo contínuo de valores no anel. Exemplificando os cenários anteriores podemos ver na

figura 12 como a distribuição dos channels é representada no hash ring. Portanto, tendo em

conta o mesmo exemplo, podemos ver na figura 13 o resultado do mesmo cenário de falha do

membro "Node 1". Como pode ser visto, somente um channel precisa de ser redistribuído, além

de serem precisos menos redistribuições, também podemos somente recalcular os channels a

que pertenciam aquele membro, tornando esta técnica ainda mais eficiente. Imaginando a

situação em que um novo membro se junta ao cluster com o nome "Node 4" e a sua posição no

anel é calculada entre o "Node 3" e "Node 2" podemos buscar todos channels a que o "Node

2" é responsável e recalcular o seu responsável, mais uma vez evitando recalcular todos os

channels. Utilizando esta mesma técnica, temos a possibilidade de saber quem poderá ser o

próximo responsável de um certo channel, algo que pode ser utilizado de forma criar um

sistema de redundância.

 MOD.IP. 108.R4.09.22

35

Figura 11- Membros do cluster representados num anel virtual

Fonte: Própria

Figura 12 - Anel virtual com membros de um cluster e channels

Fonte: Própria

 MOD.IP. 108.R4.09.22

36

Figura 13- Anel virtual com membros de um cluster e channels com a falha de um membro

Fonte: Própria

4.5.4 Consistência Eventual

Portanto, utilizando gossip e consistent hashing conseguimos atribuir channels para

diferentes membros de forma a distribuir a carga pelo cluster, no entanto, tudo de forma

eventualmente consistente. Tendo o cluster consistência eventual é importante perceber no que

isto consiste. Portanto, a consistência eventual é um modelo de consistência em sistemas

distribuídos em que as atualizações feitas em um membro são propagadas para os outros

membros do cluster em um período não imediato, ou seja, pode haver um certo atraso até que

todos os membros recebam a mesma atualização. Este modelo de consistência é utilizado em

sistemas que podem lidar com uma pequena inconsistência temporária na informação, mas que

ainda garantem que eventualmente todos os membros terão a mesma informação. Assim sendo,

a consistência eventual pode apresentar alguns problemas, como a possibilidade de leituras

inconsistentes entre membros, ou seja, um membro pode ter informações mais atualizadas do

que outro. No caso deste projeto, visto não se tratar de um sistema que gere informação e onde

todas as informações importantes são armazenadas numa base de dados, a consistência eventual

não é problemática, e é utilizado como ferramenta para aumentar a escalabilidade do sistema.

 MOD.IP. 108.R4.09.22

37

4.6 Novo sistema

Tendo agora as partes fundamentais do sistema, com o consenso a ser resolvido com o

protocolo gossip, a intercomunicação com o framework gRPC e a distribuição utilizando a

junção do gossip e hash ring, é importante perceber como estes irão funcionar em conjunto.

Em primeiro lugar, temos a parte responsável por chegar ao consenso de quantos membros

existem no cluster, esta parte assim como previamente referida é gerida pelo protocolo gossip.

Portanto, sempre que um novo membro se junta ou sai do cluster, este irá refletir no hash ring.

Lembrando, que no hash ring vão ser mapeados todos os identificadores dos membros do

cluster. Assim sendo, quando precisamos de distribuir um channel ou localizá-lo, será

calculada a localização do channel no hash ring utilizando o identificador deste. Sabendo a

posição no hash ring, podemos facilmente calcular a qual membro o channel pertence.

Portanto, quando um membro sai ou se junta, a sua posição será adicionada ou removida do

hash ring e potencialmente será necessário recalcular a quais membros os channels pertencem.

O ponto de intercomunicação, neste sistema é introduzido quando é necessário enviar

informação entre membros, por exemplo, publicar um evento num channel, exige que um

pedido seja feito ao membro responsável por este, ou seja, uma conexão será criada ou

reutilizada ao membro destino onde será enviado o pedido para publicar o evento. Assim como

mencionado, esta intercomunicação será realizada com o framework gRPC, de forma a saber

os endereços para qual a conexão será criada, será utilizado o protocolo gossip para descobrir

esses endereços.

Portanto, o protocolo gossip é o elemento principal destes três pontos, este em junção com

os outros dois pontos permite ter bases para a criação de um sistema distribuído.

Exemplificando o funcionamento destes componentes temos a figura 14 e figura 15. Nesta

figura temos um cluster com os Nodes 1, 2 e 3, sendo que no Node 1 está conectado o Cliente

1 e no Node 3 está conectado o Cliente 2, assim como representado na parte esquerda da

primeira etapa da figura. Na parte direita, temos o mapeamento dos 3 Nodes representada no

hash ring. Neste exemplo, o Cliente 1 subscreve ao channel “product_1” , portanto o Node 1

calcula no hash ring a posição deste channel que resulta no Node 2 assim como representado

na segunda etapa. Sendo o Node 2 o resultado obtido, significa que este é o responsável pelo

channel “product_1”, portanto, o Node 1 vai estabelecer uma conexão bidirecional utilizando

o framework gRPC com o Node 2, assim como pode ser visto na terceira etapa. Assim que a

conexão é estabelecida e a intenção de subscrever é enviado para o Node 2, este cria o channel

(caso não exista), adiciona o Cliente 1 à lista de subscritos e vai enviar todos os futuros eventos

 MOD.IP. 108.R4.09.22

38

que receber para o Node 1 e este para o Cliente 1. Na quarta etapa, o Cliente 2 pretende enviar

um evento para o mesmo channel, para isso, o Node 3 repete o mesmo processo anterior e

estabelece uma conexão com o Cliente 2. Por fim, na quinta etapa o Node 3 envia o evento

recebido para o Node 2, que por sua vez envia para o Node 1 e que por fim envia para o Cliente

1.

Figura 14 - Exemplo de funcionamento parte 1

Fonte: Própria

 MOD.IP. 108.R4.09.22

39

Figura 15 - Exemplo de funcionamento parte 2

Fonte: Própria

Desta forma temos os 3 componentes em funcionamento, protocolo gossip para manter uma

lista de Nodes ativos, o hash ring para distribuir os channels pelos Nodes e o framework para

gRPC para comunicar entre os membros do cluster ou Nodes.

Existe ainda um ponto, relativamente à inicialização do cluster, ou como este é

primeiramente formado, sendo que a mutação deste é gerida também pelo protocolo gossip,

que será mencionado mais à frente.

4.7 Funcionamento

Nesta parte, será explicado em mais detalhe o funcionamento dos componentes da aplicação,

desde a sua inicialização até a sua terminação, começando pela inicialização da aplicação e

como um cluster é iniciado, seguido os seus componentes mais importantes e funcionalidades

destes.

4.7.1 Inicializar

Para iniciar um cluster é necessário a existência de mais que uma instância da aplicação. A

uma destas instâncias é indicado os endereços de rede da outra, para que uma conexão seja

estabelecida. Assim que estabelecida, ambas instâncias formam um cluster de acordo com o

protocolo gossip, e novas instâncias têm de se juntar ao cluster utilizando o mesmo processo.

Para este processo, é necessário o conhecimento dos endereços de rede das novas instâncias

da aplicação, algo que costuma ser gerido por um service discovery, ou descoberta de serviços.

Este é um serviço utilizado em arquiteturas de sistemas distribuídos para encontrar e se

conectar a serviços disponíveis numa rede, este tem um endereço de rede conhecido por todas

 MOD.IP. 108.R4.09.22

40

aplicações que o usam para registarem a sua presença e publicarem informações sobre si,

tornando mais fácil para outros serviços localizá-los e se comunicarem com eles. Isto permite

que os sistemas distribuídos sejam mais flexíveis, escaláveis e resilientes, uma vez que os

serviços podem ser facilmente adicionados ou removidos sem afetar a operação geral do

sistema.

Na empresa não existe um service discovery, visto que o NATS serve como um serviço

central que permite a comunicação entre serviços, evitando assim a necessidade de um service

discovery. Portanto, para esta aplicação um service discovery seria útil, mas visto a inexistência

de um, foram utilizados meios mais simples de forma a descobrir outras instâncias desta

aplicação.

AWS ECS

O serviço AWS ECS (apêndice B), é onde a aplicação vai ser executada, utilizando Docker

containers. Este serviço oferece uma API, que permite que sejam consultadas informações

sobre as instâncias em execução. Portanto, quando uma nova instância é criada, esta utiliza esta

API, para consultar todas as placas de rede do mesmo tipo da aplicação, retornando assim os

endereços de rede a que estas é atribuído, com estes endereços a aplicação realiza um pedido

para se juntar ao cluster, que será aceite caso as credenciais da nova instância estejam corretas.

UDP

Para ambientes locais de desenvolvimento, é utilizado o UDP Broadcast. Sendo isto uma

técnica de comunicação em rede que envia mensagens de um emissor para vários dispositivos,

sem que o emissor precise saber exatamente quem são esses dispositivos ou onde estes estão

localizados na rede. Nesse método, o emissor envia uma mensagem de difusão (Broadcast)

para um endereço IP especial, que é reconhecido por todos os dispositivos conectados na rede.

Assim, todos os dispositivos conectados na rede que estão à escuta nesse endereço IP especial,

podem receber a mensagem enviada pelo emissor. Quando os outros membros recebem a

mensagem enviada, estes podem anunciar sua presença na rede e permitir que outros membros

os descubram de maneira fácil e rápida.

4.7.2 Hub

Um hub é um elemento que representa um tenant na aplicação, cada Hub tem as suas

próprias configurações, método de autenticação, channels, namespaces e é o elemento que

agrupa as sessões de clientes para cada tenant. Adicionalmente, cada hub é representado por

 MOD.IP. 108.R4.09.22

41

um identificador de texto que seja codificável em UTF-8. De forma a evitar criar cada hub

explicitamente, este pode ser criado de forma dinâmica pelo cliente ou serviço utilizando

configurações por defeito.

Ao iniciar um hub as suas configurações são consultadas à base de dados, e caso não existam

estas são criadas de acordo com as configurações por defeito. As configurações por defeito são

definidas através de um ficheiro de configuração necessário para inicializar a aplicação. Após

o hub ser criado e inicializado, este finalmente está pronto para criar sessões e channels. De

forma a evitar que um hub que não esteja a ser utilizado se mantenha ativo em memória, é

definido um intervalo de tempo que começa sempre que o número de sessões no membro em

questão chegue a zero, adicionalmente, caso uma nova sessão seja criada, o intervalo de tempo

é cancelado e o hub permanece ativo. Caso o intervalo de tempo termine, o hub é terminado.

Durante a sua terminação qualquer nova sessão ou criação de channel que pertença a este hub

será posto em espera até que o processo termine. A terminação do hub é praticamente

instantânea, no entanto, existe a possibilidade de que um pedido para a criação de um channel

ou sessão seja recebido durante a sua terminação. Nestes casos, o hub é primeiro terminado e

nova instância é de seguida criada para responder a estes pedidos.

4.7.2.1 Configurações

Cada hub tem um conjunto de configurações que serão utilizadas para cada sessão a que

este pertence. Adicionalmente, este também define um conjunto de regras para os channels que

ainda não tenham configurações definidas.

Default Public

Começando pela configuração Default Public, este apenas define se todos os channels que

pertencem a este hub são de acesso público por defeito, ou seja, este não necessita que o

utilizador esteja autenticado ou que tenha autorização definida para aceder a este. Esta

configuração permite que novos utilizadores ainda não registados sejam capazes de subscrever

a informação recebida no channel em questão. Esta configuração pode ser ignorada caso

estejam definidas regras mais específicas para esta channel.

Allow Anonymous

Embora a configuração Default Public permita que utilizadores não autenticados tenham

acesso aos channels, existe a possibilidade que o Hub não queira permitir utilizadores não

autenticados, é nestes casos que a funcionalidade Allow Anonymous pode ser ativada. Portanto,

 MOD.IP. 108.R4.09.22

42

um Hub pode permitir somente utilizadores autenticados enquanto define channels de acesso

público, permitindo que qualquer sessão autenticada tenha acesso a estes channels sem que

uma permissão explicita seja definida.

User Channel

A configuração User Channel permite que o hub crie automaticamente um channel para

uma sessão que esteja autenticada. Este channel é partilhado por todas sessões que pertençam

ao mesmo utilizador. O identificador do channel é definido utilizando um namespace de

utilizador que por defeito é “u” e a junção do identificador do utilizador com um separador “:”

no meio, ou seja, um utilizador com o identificador “user_123” resultaria no identificador

“u:user_123”. Este channel pode ser utilizado quando é necessário que eventos sejam

publicados para um utilizador em específico, como por exemplo, uma mensagem. Sendo que

este channel é partilhado por todas as sessões do mesmo utilizador, existe a possibilidade que

um dos dispositivos emita eventos para os outros. Um exemplo da utilização desta

funcionalidade, passa por um utilizador com uma wishlist (lista de produtos desejados), onde

num dos dispositivos o utilizador adiciona ou remove um item da sua wishlist e um evento com

esta alteração é enviado para os outros dispositivos, estes por sua vez podem atualizar a sua

informação local da wishlist de acordo com o evento recebido, permitindo desta forma a

sincronização em tempo real da wishlist.

Default Rules

Por fim, temos o Default Channel Rules, este é um identificador para as definições a serem

utilizadas por defeito em channels sem configurações definidas. As configurações disponíveis

para cada Channel Rule serão mencionadas durante os channels. Portanto, em vez de definir

configurações para todos os channels é possível escolher configurações que vão ser aplicadas

a todos os channels pertencentes ao hub, no entanto, caso configurações mais especificas

estejam definidas essas vão se sobrepor a esta.

4.7.2.2 Atualizações

Cada membro do cluster, mantém as configurações do hub em memória de forma a reduzir

o número de consultas à base de dados e a reduzir o tempo que demora a criar uma sessão.

Visto o hub ser somente responsável por agrupar channels, sessões e configurações, não é

necessária coordenação deste entre os membros do cluster. No entanto, sempre que houver uma

atualização, é necessário que todos os membros do cluster atualizem as suas configurações em

 MOD.IP. 108.R4.09.22

43

memória. Assim sendo, sempre que uma alteração às configurações de um hub ocorra, o

protocolo gossip é utilizado para propagar a informação de que a configuração foi modificada.

Por fim, os recetores por sua vez têm a responsabilidade de realizar uma consulta à base de

dados de forma a buscarem as configurações mais recentes. Se por algum motivo, o membro

do cluster não receber uma mensagem a notificar que as configurações foram alteradas, existe

um temporizador configurável, que quando este termina o hub volta a consultar as suas

configurações e atualiza para as mais recentes.

4.7.3 Channel Rules

De forma a definir as configurações diferentes entres channels e namespaces existe um

objeto que define todas configurações possíveis de um channel, com o nome Channel Rules,

que também será referenciado como configurações. Cada configuração tem como identificador

um valor de texto em conjunto com o identificador do hub a que pertence, ou seja, uma chave

composta. Utilizando uma chave composta, é possível utilizar nomes iguais de configurações

entre hubs, isto facilita a criação de configurações e manutenção destas.

4.7.3.1 Funcionalidades

As configurações possíveis poderão não ser suportadas por todos tipos de channels, algo

que será explicado durante a informação sobre channels, assim sendo, existem as seguintes

configurações disponíveis:

 Allow Retain Message;

 Store Message;

 Push Message;

 Presence;

 Public;

 Client Publish;

 Allow Anonymous;

 Occupancy.

As configurações Public e Allow Anonymous funcionam exatamente da mesma forma como

as configurações no hub, no entanto têm como alvo um channel em específico ou num

namespace. O resto das funcionalidades serão mencionadas a seguir em conjunto com os

channels.

 MOD.IP. 108.R4.09.22

44

4.7.4 Channel

Um channel é o elemento onde as informações são recebidas, processadas e enviadas. Este

é o elemento que é coordenado entre os membros do cluster utilizando consistent hashing. Este

é semelhante a um tópico em outras aplicações PubSub, no entanto, neste caso o channel pode

não ser somente um tópico para PubSub.

Em geral um channel só existe num único membro do cluster ao mesmo tempo, no entanto,

em certos casos existe a possibilidade que mais que uma instância do mesmo channel esteja

ativa. Um exemplo deste caso pode ser observado quando um novo membro é adicionado ao

cluster, neste caso existe a possibilidade de que este seja o novo responsável pelo channel, e

enquanto a informação de que o membro foi adicionado ao cluster não seja propagada para o

antigo responsável pelo channel este vai continuar a assumir a sua responsabilidade por este.

Todos os membros que tenham conhecimento do novo responsável pelo channel vão enviar

eventos para este, enquanto membros que não tenham ainda recebido essa informação vão

enviar para o antigo responsável. Caso o antigo responsável já tenha recibo a informação este

irá recusar todos os eventos que receba para o channel em questão.

Em casos em que o membro falha, todos os channels a que este era atribuído irão fica

temporariamente indisponíveis até que a sua falha seja propagada pelo cluster e um novo

responsável seja atribuído.

4.7.4.1 Inicialização

A inicialização de cada channel funciona de forma similar a de um hub, é realizada uma

consulta para as configurações do channel que é representada pelas configurações previamente

mencionadas, que são também mantidas em memória. Posteriormente, é iniciado um ciclo para

processar mensagens em espera e é iniciado um processo similar ao de terminação de um hub.

4.7.4.2 Atualização

Tendo em conta que um channel somente utiliza as configurações de um Channel Rules é

necessário que sempre que este seja atualizado que essa informação seja propagada utilizando

o mesmo mecanismo que é utilizado para as configurações de um hub. Por fim, quando o

membro receber essa informação, este irá consultar a base de dados para atualizar para a nova

informação e irá atualizar todos channels que estejam a utilizar o Channel Rules. Na

eventualidade de ser aplicada uma configuração para um channel em específico, então

utilizando gRPC o membro responsável pelo channel será notificado da atualização. Para

 MOD.IP. 108.R4.09.22

45

namespaces o mecanismo de propagação também é utilizado, e todos os channels do hub que

tenham o namespace irão reavaliar qual Channel Rules será utilizado. Em certos casos, existe

a possibilidade de que um membro não receba a informação devido a problemas de rede. De

forma a garantir que eventualmente a informação é atualizada, cada channel inicia um intervalo

de tempo interno, que sempre que termina é consultada novamente a base de dados de forma a

buscar a última informação e é novamente começado o intervalo de tempo.

4.7.4.3 Processamento de mensagens

As mensagens nos channels são processadas serialmente de forma FIFO (First In, First

Out), ou primeiro a entrar, primeiro a sair. Embora o processamento de todos channels seja de

forma concorrente, o processamento de mensagens de cada channel ocorre de forma

sequencial, permitindo manter a ordem das mensagens. No entanto, devido à consistência

eventual do cluster, a ordem de mensagens pode não se manter nos primeiros tempos após a

alteração dos membros do cluster devido a possibilidade de existência de 2 instâncias de um

channel no cluster assim como previamente mencionado.

4.7.4.4 Tipos de channels

Sendo o channel o elemento distribuído pelo cluster, este vai ser utilizado para implementar

diferentes funcionalidades que usam os mesmos mecanismos de distribuição, reduzindo a

complexidade de manter várias implementações de distribuição. Atualmente, existem 3 tipos

de channels, sendo possível adicionar mais. Durante a implementação de um tipo de channel,

pode ser decidido não implementar algumas funcionalidades definidas no channel rules, seja

por não ser aplicável ou por não ser necessário.

4.7.4.5 Default

O tipo de channel Default ou normal, consiste num simples tópico PubSub, onde mensagens

podem ser publicadas e distribuídas por todos os clientes interessados. Estas mensagens são

processadas de forma sequencial sempre que possível. Este tipo de channel é capaz de utilizar

todas as funcionalidades definidas no channel rules.

4.7.4.6 Document

O tipo de channel Document, tal como o nome indica, consiste num documento com

estrutura similar a JSON, onde clientes podem pedir para realizar operações que depois são

transmitidas para clientes interessados no channel. As operações no documento são baseadas

 MOD.IP. 108.R4.09.22

46

no RFC 6902 (IETF, 2013), nomeado de JavaScript Object Notation (JSON) Patch,

adicionalmente, o tipo de dados binário é permitido neste documento ao contrário do formato

JSON. Embora seja baseado num documento JSON, esta versão utiliza Protocol Buffers para

que possa ser serializado em binário de forma eficiente e mais compacta. Este tipo de channel,

permite que múltiplos clientes tenham um conjunto de dados sincronizados enquanto estes são

alterados. De forma reduzir a quantidade de informação a ser enviada por rede, em cada

alteração realizada ao documento, somente as alterações são enviadas e cabe ao cliente aplicar

as alterações à sua versão do documento local.

Cada documento é armazenado na base de dados, a cada intervalo de tempo de configurável

ou quando o channel é terminado. O documento é serializado em binário, comprimido e por

fim armazenado. No caso de o membro falhar, qualquer alteração não guardada irá

naturalmente ser perdida. De forma a evitar perder alterações, todas as alterações não guardadas

serão armazenadas numa lista na aplicação Redis para que quando o channel volte a ser

inicializado este seja capaz de reconstruir o documento até ao estado anterior.

O documento suporta as seguintes operações: add, remove, replace, move e copy. A

operação add, tal como o nome indica consiste em adicionar uma propriedade ao documento.

O remove, remove uma propriedade, replace substituir uma propriedade e move e copy consiste

em utilizar uma propriedade do documento e mover ou copiar para o novo destino.

Cada operação no documento pode ser representada com as seguintes propriedades:

 op - O tipo de operação a ser aplicada;

 path - O caminho no documento onde a operação será aplicada, por exemplo, o path

“a/b/c” define que existe uma hierarquia onde a é o nível acima de b e b de c.

Adicionalmente, tendo a e b propriedades associadas estas serão convertidas, caso

necessário, na representação de um objeto em JSON. De forma a trabalhar com listas,

índices podem ser utilizadas no path, por exemplo, o path “a/0” define que a é uma lista

e a operação será realizada no índice 0, mais uma vez, a será convertido numa lista caso

necessário;

 from - Em alguns comandos como o copy e move é necessário providenciar um caminho

de fonte e um caminho de destino, sendo esta a fonte e o path o destino;

 value - Por fim, o value representa o valor a ser utilizado, este pode ser qualquer tipo

permitido pelo documento incluindo objetos complexos com múltiplos valores.

 MOD.IP. 108.R4.09.22

47

Cada pedido de alteração ao documento pode conter várias operações, e são estas que são

transmitidas aos outros clientes para que estes as apliquem localmente. Este documento é

acompanhado de um número incremental que representa a sua versão que é atualizado por cada

pedido de alteração realizado, este é utilizado para que os clientes consigam perceber se

perderam alterações e para que possam comparar com a sua versão local. Por fim, este tipo de

documento também suporta a funcionalidade de PubSub do channel Default.

4.7.4.7 Notification

O tipo de channel Notification, tal como o nome indica, tem como objetivo gerir as

notificações. Este permite a criação de notificações e gerir o seu estado de leitura de forma não

individual, ou seja, todos clientes no channel partilham o mesmo estado de leitura. A criação

de notificações não pode ocorrer através de clientes, somente através de outros serviços

autenticados, no entanto, o cliente tem a capacidade de marcar as notificações como lidas. Este

channel gere o número de notificações não lidas, enviando o número para o cliente sempre que

este seja alterado, ou seja, caso o channel tenha 2 notificações não lidas, esta informação será

enviada para o cliente, caso o cliente marque uma como lida, então o channel envia a

informação de qual notificação foi lida para que atualizem a sua informação local e volta a

enviar a quantidade de notificações não lidas. Ao contrário dos outros tipos de channels, a

grande parte das funcionalidades do channel rules, não são suportadas, sendo possível somente

utilizar as funcionalidades Public e Allow Anonymous.

4.7.4.8 Extensão

Assim como visto nos tipos de channels anteriores, é possível reutilizar o método de

distribuição do channels e criar um tipo que se adapte à situação necessária. Por exemplo, um

channel para conversações ou para rastreamento de encomendas pode ser criado utilizando

funcionalidades já existentes e adicionando específicas para o caso necessário.

Adicionalmente, devido às funcionalidades desenvolvidas de forma modular em cada channel

é possível criar um channel que suporte todas funcionalidades previamente mencionadas ao

mesmo tempo, um exemplo disto pode ser observado no tipo de channel Document, onde todas

as funcionalidades do Default estão presentes enquanto adiciona a funcionalidade do

documento.

 MOD.IP. 108.R4.09.22

48

4.7.4.9 Funcionalidades

Utilizando as channel rules é possível definir quais funcionalidades devem estar ativas num

channel, no entanto, nem sempre o channel tem suporte para as funcionalidades, como

previamente mencionado. Atualmente existem 9 funcionalidades definidas, e com suporte para

a adição de novas.

Retain Message

A funcionalidade, retain message faz uma cópia da última mensagem marcada para ser

retida e armazena-a em memória local e na aplicação Redis para que possa ser recuperada. Esta

mensagem, é depois enviada sempre que um cliente subscreva a este channel. Esta

funcionalidade é baseada na funcionalidade do protocolo MQTT, esta é útil para casos em que

é necessário que novos clientes que subscrevem ao channel tenham a última informação

publicada no channel. Um exemplo simples para esta funcionalidade passa por ter um channel

para receber o stock atual de um produto, desta forma o cliente sabe qual a última atualização

de stock e irá receber novas atualizações.

Store Message

Em certos casos é necessário que algumas mensagens fiquem armazenadas para serem

acedidas posteriormente, assim, com esta funcionalidade, qualquer mensagem enviada

marcada para ser armazenada irá ser primeiro armazenada na base de dados e só depois enviada

para os clientes. Esta funcionalidade é bastante útil quando é preciso manter um histórico de

mensagens, como por exemplo, um chat ou então manter um registo para auxiliar a depuração

de um problema.

Push Message

Esta funcionalidade está mais relacionada com aplicações móveis embora também funcione

com aplicações Web. Esta consiste em enviar uma notificação Push utilizando as plataformas

nativas da Apple (APNS - Apple Push Notification Service) e Google (FCM - Firebase Cloud

Messaging) para os dispositivos móveis, e aplicações Web com o FCM. Assim como as outras

funcionalidades, esta é ativada quando uma mensagem marcada com esta funcionalidade é

recebida, embora a notificação seja enviada, a mensagem continua a ser enviada para os clientes

subscritos ao channel. Ao contrário das outras funcionalidades, o envio da notificação não é

garantido ficando ao cargo das plataformas o seu envio.

 MOD.IP. 108.R4.09.22

49

Presence

Esta funcionalidade permite o rastreamento da presença das sessões subscritas num channel.

Sempre que uma nova sessão se subscreva ao channel, esta recebe o estado atual da presença

de todas as sessões atualmente subscritas, enquanto as outras sessões subscritas no channel

recebem um evento de que uma nova sessão subscreveu ao channel. Após ter recebido estado

inicial, a sessão só irá receber alterações que ocorram, como uma nova sessão subscreveu ou

uma sessão removeu a sua subscrição. A presença de cada cliente é definida pelo seu

identificador de sessão, identificador de utilizador caso existente, metadados definidos durante

a autenticação e uma timestamp de quando se subscreveu. Esta informação é gerida dentro do

channel, em memória e não é armazenada, portanto, caso o membro do cluster falhe esta

informação tem de ser reconstruída na nova instância do channel.

Public

A funcionalidade Public é igual à previamente descrita no hub como Default Public, sendo

que esta se aplica num nível diferente. Esta define que os channels afetadas pela configuração

são de acesso público, ou seja, qualquer sessão pode se subscrever aos channels sem ter

permissões definidas.

Client Publish

Esta funcionalidade define se as sessões podem publicar informação no channel. Em casos

em que o channel é publico, nem sempre existe o interesse de permitir que as sessões publiquem

eventos neste. Nesses casos, a publicação de eventos no channel pode ser desativada para todas

sessões, sem precisar de definir permissões especificas na autenticação de uma sessão. É

possível sobrepor a esta configuração caso a sessão tenha permissão definida para escrita neste

channel, dando assim a capacidade a somente algumas sessões de publicarem eventos.

Allow Anonymous

Novamente, esta funcionalidade, simplesmente define se utilizadores não autenticados

podem aceder a este channel. Esta funcionalidade é útil quando é necessário ter um channel

público com a funcionalidade public, mas que só utilizadores autenticados têm autorização.

 MOD.IP. 108.R4.09.22

50

Occupancy

A funcionalidade occupancy permite rastrear a quantidade de clientes subscritos ao channel,

é uma versão mais leve do que a funcionalidade Presence sendo que esta só gere um contador

em vez de uma lista de sessões. Esta funcionalidade pode ser utilizada, em casos em que é

necessário mostrar quantos utilizadores estão neste momento a ver um produto ou informação,

enquanto consome menos recursos do que a funcionalidade Presence. Ter ambas

funcionalidades ativas é completamente redundante visto ser possível calcular o número de

cliente com a funcionalidade Presence.

Channel Live History

Outra funcionalidade aplicada apenas a channels default, e opcionalmente desativada nas

configurações da aplicação é a Live History, esta mantém as últimas mensagens enviadas nos

channels em memória. Esta funcionalidade, tem como objetivo prevenir a perda de informação

durante desconexões rápidas, principalmente em dispositivos móveis, por exemplo, durante a

troca de rede ou durante passagem num túnel. O número de mensagens armazenadas e a

ativação da funcionalidade podem ser definidas nas configurações da aplicação.

Terminação

Um channel naturalmente consome recursos de memória e de processamento, portanto, de

forma a reduzir os channels que estejam sem uso, um mecanismo similar ao do hub é utilizado.

No caso do channel, sempre que o número de sessões subscritas chegue a 0 um intervalo de

tempo configurável começa e caso não ocorra nenhuma nova subscrição o channel é terminado

limpando toda a memória local incluindo as mensagens da funcionalidade live history.

4.7.5 Namespace

O namespace é uma forma de agrupar channels a um conjunto de regras, em vez de definir

um channel rules para cada channel individualmente. É possível definir um namespace

atribuir-lhe um channel rules e todos os channels dentro do namespace utilizam o mesmo

channel rules. Um namespace é somente aplicável no hub a que este pertence, podendo existir

configurações diferentes para o mesmo identificador de namespace em vários hubs.

 Um channel é considerado pertencente a um namespace caso o seu identificador comece

com o identificador do namespace. Por exemplo, um channel com identificador

“product:id_1_stock” é considerado como pertencente ao namespace “product”, sendo

 MOD.IP. 108.R4.09.22

51

utilizado “:” como separador. Somente o texto até ao primeiro separador é avaliado como

namespaces, caso um separador não esteja presente no channel, então este não pode pertencer

a um namespace. Esta funcionalidade é especialmente importante em casos em que o channels

podem ter nome dinâmicos, mas é necessário que estes contenham as mesmas regras, utilizando

o exemplo descrito podemos definir um conjunto de regras para todos os channels com

informação de stock dos produtos sem precisar de definir cada um individualmente.

4.7.6 Regras de Channel, Namespace e de Hub

Existindo channel rules para channels, namespaces e hubs é necessário definir quais

channel rules se aplicam quando vários estão presentes a diferentes níveis. Assim sendo, o

objetivo é seguir sempre a regra mais específica sendo a ordem de prioridade channel,

namespace e por fim hub, ou seja, caso um channel tenha regras definidas para o seu

identificador estas têm prioridades perante as definidas no namespaces e hub. Caso não exista

para o channel, mas exista para o seu namespace então esta tem prioridade perante as do hub,

por fim, não existindo mais níveis, qualquer channel que não tenha regras definidas para o seu

identificador ou namespace pertencente irá utilizar as regras definidas no hub.

4.7.7 Auth Provider

De forma a permitir que cada tenant tenha o seu próprio meio de autenticar os seus clientes,

foi criado o conceito de Auth Provider. Este consiste em um conjunto de configurações que

define como o processo de autenticação deve ocorrer. Assim que um cliente pedir para se

autenticar, a informação que o cliente envia é redirecionada por HTTP ou NATS para o destino

configurado, que por sua vez deve responder com estado de sucesso, identificador do utilizador,

meta dados do utilizador e permissões. Nas configurações disponíveis é possível definir o

método de redireccionamento estando disponíveis as opções HTTP e NATS, na mensagem de

redireccionamento é enviado o identificador do hub e da sessão. Adicionalmente, é possível

definir cabeçalhos a serem enviados na mensagem. Portanto, cada hub pode somente utilizar

um Auth Provider. Por defeito um hub é criado com um Auth Provider que utiliza um caminho

que inclui o seu nome e utiliza NATS como meio de redireccionamento.

4.7.8 Session

A session ou sessão é o elemento que gere a conexão com o cliente, este processa as

mensagens recebidas pelo cliente, gere o heartbeat da conexão e verifica as permissões do

utilizador antes de realizar ações. Um utilizador pode ter várias sessões tendo estes um

 MOD.IP. 108.R4.09.22

52

identificador próprio, as sessões podem ser autenticadas e não autenticados, sendo possível

autenticar posteriormente.

Este elemento foi desenvolvido de forma a ser agnóstico ao tipo de comunicação utilizado,

permitindo que vários protocolos sejam implementados como WebSocket, SSE, gRPC e TCP.

Adicionalmente, de forma a garantir a estabilidade e o bom funcionamento da aplicação um

rate limit é aplicado individualmente a cada sessão independente de quantas conexões

simultâneas um utilizador tenha. O rate limit é aplicado à quantidade de mensagens recebidas

por segundo, sendo a quantidade configurável, mensagens como heartbeat não são tidas em

conta visto estas serem necessárias para garantir que a conexão se mantenha aberta. De forma

a reduzir a quantidade de heartbeats necessários, sempre que um cliente envia uma mensagem,

independentemente de que tipo seja, esta conta como um heartbeat e por consequência adia o

envio da próxima verificação.

4.7.8.1 Tipo de conexão

Assim como mencionado anteriormente, a sessão é agnóstica ao protocolo de comunicação

utilizado e permite que vários protocolos sejam implementados. Atualmente, somente dois

foram implementados, sendo estes WebSocket e SSE. Em ambos os casos toda a informação

transmitida está em formato binário, no caso de WebSocket é possível enviar e receber

mensagens do cliente, no caso do SSE é apenas suportado enviar mensagens para cliente, sendo

necessário que o cliente envie quais channels pretende subscrever quando estabelece a

conexão.

4.7.8.2 Protocolo

De forma ao cliente comunicar com aplicação, foi estabelecido um protocolo de mensagens

para que ambas as partes saibam que tipo de mensagens existem, quais ações são possíveis e

permitir que ambas saibam o formato das mensagens com antecedência.

Início com JSON

Inicialmente o protocolo de mensagens foi definido utilizando o formato de serialização

JSON aproveitando as habilidades dinâmicas do mesmo. No entanto, em certos casos o envio

de mensagens com conteúdo em binário era necessário, e de forma a enviar este tipo de dados

em JSON este teria de ser convertido em base64. Infelizmente, converter dados binários em

base64 além de ter um custo de desempenho envolvido, este também aumenta o tamanho do

 MOD.IP. 108.R4.09.22

53

mesmo conteúdo, sendo o aumento de cerca de mais 33% do tamanho original. O valor de

aumento pode ser calculado utilizando a seguinte fórmula:

𝑐𝑒𝑖𝑙((𝑡𝑎𝑚𝑎𝑛ℎ𝑜 × 8) × 6) − (𝑡𝑎𝑚𝑎𝑛ℎ𝑜 × 8)

Sendo o “tamanho” o número de bytes, portanto, num exemplo de 1000 bytes o valor final

seria aproximadamente 13330 bytes.

Transição para Protobuf

Portanto, mantendo as mensagens, o formato de serialização foi convertido para protobuf,

assim, passa a ser possível o envio de dados em binário sem passos intermediários. Outras

vantagens passam por melhor performance de serialização e com tamanhos finais mais

pequenos do que seria possível em JSON, além de ser possível utilizar as definições em

protocol buffers de forma a evitar problemas na evolução das propriedades das mensagens e

também a validar o tipo dos dados durante a descodificação.

Estrutura de envelope

No protocolo de mensagens, todos os tipos de mensagens ou eventos são enviados numa

estrutura comum nomeada de envelope, este envelope contém somente duas propriedades: tipo

de evento e conteúdo. O tipo de evento é representado por uma enumeração e o conteúdo é

simplesmente um conjunto de bytes. Em certos casos é necessário relacionar uma mensagem

com outra, por exemplo, vários pedidos podem ser realizados onde se espera uma resposta de

cada um destes, e por muitas vezes as respostas podem não ser recebidas da ordem em que os

pedidos foram realizados. De forma, a permitir o cliente associar uma resposta com o pedido

realizado, as mensagens incluem a possibilidade de enviar um número inteiro como

identificador de pedido, que será devolvido ao cliente com a resposta. Este identificador é

transparente para aplicação e em certos pedidos até são opcionais, nesses casos, quando o

cliente não preenche o identificador de pedido o servidor não envia uma resposta.

Tipos de eventos

Para cada tipo de mensagem está definido um evento, no entanto, um evento pode

representar conteúdos diferentes de acordo com quem envia e quem recebe, por exemplo,

quando uma mensagem com o tipo de evento Auth é enviada pelo cliente, é assumido que o

cliente está a realizar um pedido de autenticação, enquanto quando uma mensagem com o

mesmo tipo de evento é enviada pela aplicação é assumido que esta é uma resposta ao pedido

anterior. Em primeiro lugar temos os tipos de evento base de uma conexão, estes são: Ping,

 MOD.IP. 108.R4.09.22

54

Pong e Close. Os tipos de evento Ping e Pong são sempre usados em conjunto sendo

geralmente o Ping enviado pela aplicação quando é necessário um heartbeat ao qual este espera

um Pong de resposta pelo cliente. Caso este não o envie, a conexão é considerada perdida e a

aplicação termina a conexão e a sessão associada. Já o tipo de evento Close é enviado somente

pelo cliente para notificar o servidor que vai terminar a conexão por vontade própria, este tipo

de evento permite que o servidor não tente guardar qualquer tipo de informação sobre a sessão.

Para tipos de eventos relacionados com a gestão da sessão temos SessionInfo,

SessionRestore e SessionRestored. O SessionInfo é sempre a primeira mensagem enviada pela

aplicação, e contém o contexto da sessão, sendo as suas propriedades:

 HubID - Identificador o hub a que a sessão pertence;

 SessionID - Identificador gerado para a sessão em questão;

 HubAllowAnonymous - Se o hub permite conexões anônimas, serve para informar o

cliente que tem um intervalo de tempo configurável na aplicação, em que a sessão pode-

se autenticar, caso não o faça esta é terminada pela aplicação;

 HubAllowUserChannel - Se o hub permite o channel de utilizador;

 DefaultPublic - Se os channels no hub são públicos por defeito;

 Authenticated - Se esta sessão já está autenticada, visto ser possível autenticar através

de parâmetros enviados enquanto a conexão está a ser estabelecida.

Os outros dois tipos de eventos são utilizados para a recuperação de sessão. A recuperação de

sessão é uma funcionalidade que permite que uma sessão já autenticada seja armazenada de

forma temporária para que possa ser recuperada em casos de reconexões rápidas, algo que

acontece regularmente com dispositivos móveis. A sessão armazenada ou Session State, guarda

a autenticação, permissões, identificadores e channels subscritos. Quando o cliente tenta

reconectar, este envia uma chave gerada que identifica a sessão a ser restaurada, caso esta seja

encontrada, é restabelecido todo o estado anterior e tentando restabelecer a subscrições aos

channels, visto que configurações deste possam ter mudado de forma a tirar o acesso à sessão.

Sempre que uma chave é utilizada, a informação armazenada é apagada para evitar reutilização.

Para o funcionamento desta funcionalidade, é enviado o tipo de evento SessionRestore após a

sessão ser autenticada, este contém somente a propriedade RestoreKey que é a chave gerada

pela aplicação para restaurar a sessão. Por fim, quando o utilizador se reconecta e a sessão é

restaurada, é enviada a mensagem do tipo SessionRestored com as seguintes propriedades:

 MOD.IP. 108.R4.09.22

55

 UserID - O identificador de utilizador da sessão;

 Authorizations - Lista de autorizações dos channels;

 Extra - Metadata definida na autenticação;

 SubscribedChannels - Lista de channels em que a subscrição foi recuperada;

 RPCs - Lista de autorizações de RPCs.

4.7.8.3 Autenticação e autorização

De forma a autenticar a sessão, existe somente um tipo de mensagem: Auth. Este tipo tem

significados diferentes dependendo de quem a envia, do cliente para aplicação é interpretado

como um pedido de autenticação, de forma inversa, é interpretado como uma resposta ao

pedido de autenticação. As informações a serem utilizadas para autenticar o utilizador são

indiferentes para aplicação sendo a responsabilidade do destinatário do Auth Provider de

interpretar e validar o conteúdo, dessa forma, a mensagem de autenticação do cliente consiste

no envelope com tipo de evento Auth e conteúdo é um conjunto de bytes. De forma a informar

a sessão do resultado, o mesmo tipo de evento é enviado, mas tendo como conteúdo:

 Success - Se a autenticação teve sucesso;

 UserID - Identificar de utilizador;

 Token - Um token gerado pela aplicação de forma a utilizar outras APIs da aplicação;

 ChannelAuthorizations - Lista de autorizações para channels;

 RPCAuthorizations - Lista de autorizações para RPCs;

 Extra - Um dicionário de valores adicionais.

As propriedades ChannelAuthorizations e RPCAuthorizations, assim como os seus nomes

indicam, são o meio disponível para fornecer permissões às sessões, além das configurações

como Public e Allow Anonymous. Cada ChannelAuthorization, consiste em três simples

propriedades, sendo o channel a ser permitido, se tem permissão de escrita (Publish) e se tem

permissão de leitura (Subscribe). Para a propriedade channel, é possível utilizar wild-cards

com os seguintes caracteres:

 * - Este permite que qualquer valor antes ou depois deste, por exemplo, com

“product:*”, qualquer channel que comece com “product:” é atingido pela permissão.

 MOD.IP. 108.R4.09.22

56

 # - Permite um valor arbitrário até ao próximo separador com “:”, por exemplo,

“product:#:stock” que atinge qualquer channel que tenha outro valor entre o “product:”

e “:stock” desde que não contenha um separador.

Para o RPCAuthorization, este tem somente a propriedade com o nome do método, e utiliza

os mesmos wild-cards que o ChannelAuthorization.

4.7.8.4 Session State

O Session State é um snapshot do último estado de uma sessão, este contém o identificador

de sessão e hub, channels subscritos e informações recebidas após autenticação. Sempre que

uma alteração ocorre na sessão, como por exemplo, uma nova subscrição, o estado atual da

sessão é copiado e armazenado no Redis, posteriormente, utilizando a chave de restauração

(RestoreKey) é realizada uma tentativa de restaurar todas subscrições ao channels anteriores

(SessionRestore), e toda a informação de autenticação é restaurada assim como o mesmo

identificador de sessão.

4.7.8.5 RPCs

Uma funcionalidade adicional, são os RPCs, quando um utilizador é autenticado, este recebe

uma lista de permissões para RPCs. Estes são representados por um valor de texto, e o seu

conteúdo é indiferente para a aplicação, sendo somente exigido o seu envio como um conjunto

de bytes. Cada RPC realizado é redirecionado para o NATS que gere o envio para o destinatário

e a sua resposta.

4.7.8.6 Streams

A funcionalidade de streams está de momento incompleta e irá se manter desativada

inicialmente, até os casos da sua utilização serem bem estabelecidos. O objetivo inicial desta

funcionalidade, passa por permitir que clientes submetam eventos para uma stream na

aplicação NATS ou outra como AWS Kinesis. Todos os eventos, são complementados com

informações da sessão, como identificador de utilizador e sessão. Esta funcionalidade será

utilizada futuramente para coleta de eventos para análise, assim como forma de os clientes

emitirem ações que tenham realizado nas aplicações móveis e receber eventos que tenham sido

acionados pelas suas ações.

 MOD.IP. 108.R4.09.22

57

4.7.8.7 Document

Para o funcionamento de um channel do tipo Document, existem 4 tipos de mensagens:

 DocumentGet - Pedir cópia do conteúdo atual documento se for enviado pelo cliente e

resposta de for pelo lado da aplicação;

 DocumentChange - Realizar alterações ao documento se for enviado pelo cliente e

resposta às alterações se for enviado pela aplicação;

 DocumentUpdated - Enviado somente pela aplicação sempre que uma alteração ao

documento é realizada, contendo nova versão e alterações aplicadas;

 DocumentInfo - Enviado somente pela aplicação com informação atual sobre o

documento como versão documento. Este é sempre enviado quando um cliente

subscreve ao channel.

4.7.8.8 Default Channel

Num Default e Document channel, onde o PubSub é permitido existem somente dois tipos

de mensagens: Publish e Ack. Como os nomes indicam, o primeiro representa um pedido de

publicação realizado pelo cliente ou quando enviado pela aplicação, representa uma publicação

que tenha ocorrido. Por fim, o Ack é enviado como confirmação se o Publish ocorreu com

sucesso, e é somente enviado caso solicitado.

4.7.8.9 Notification Channel

Por fim, os Notification channels utilizam os tipos de mensagens:

 NotificationNew - Sempre que uma nova notificação é criada;

 NotificationRead - Recebido pelo cliente quando uma notificação é marcada como lida;

 NotificationInfo - Informação recebida pelo cliente com o número de notificações não

lidas;

 MarkNotificationAsRead - Enviada pelo cliente, quando pretende marcar um conjunto

de notificações como lidas.

4.8 Métricas

De forma a compreender como a aplicação está a funcionar, estão a ser coletadas algumas

métricas a nível global e individualmente por cada tenant, estas métricas começaram por ser

somente número de mensagens e bytes enviados e recebidos que são coletadas em forma de

contadores totais e os seus valores em intervalos de 5 em 5 minutos, sendo um valor

 MOD.IP. 108.R4.09.22

58

configurável. De forma a coletar erros e analisar a origem destes, é utilizado o serviço AWS

Cloudwatch (apêndice C) e AWS X-Ray (apêndice D), este também é utilizado para acompanhar

informações como número de instâncias, utilização de CPU e RAM. Adicionalmente, existem

mais métricas a serem coletadas a nível global utilizando Prometheus, além das primeiras

mencionadas, temos número de subscrições, sessões ativas, tempo médio de processamento de

uma publicação num channel e tempo médio de processamento de alterações a um documento.

Estas métricas são fundamentais para avaliar a eficiência da aplicação, identificar possíveis

problemas e promover melhorias na aplicação. No entanto, eventualmente surgiu o interesse

de analisar mais duas métricas adicionais, que resultou na coleta de cada sessão iniciada e

quando esta terminava, desta forma, pode ser observado quantas sessões foram iniciadas num

período de tempo e a duração de cada, estas métricas são coletadas por cada tenant.

4.8.1 Dashboard

Ao longo do desenvolvimento da aplicação, foi também desenvolvido um cliente em

typescript e um dashboard para testar o funcionamento da aplicação e ser capaz de analisar o

seu funcionamento. Dessa forma, o dashboard foi desenvolvido em typescript (apêndice E)

com a biblioteca de interface visual React. Esta ferramenta consiste em somente 4 páginas, e

sendo uma ferramenta interna esta contém mais uma página para a autenticação do seu

utilizador.

4.8.1.1 Contadores

A primeira parte consiste numa simples visualização dos contadores armazenados

globalmente, assim como a possibilidade de ver as de um hub. Adicionalmente, mostra algumas

informações atuais sobre o cluster como número de membros, hubs, sessões e channels ativos

no momento, assim como pode ver visto no apêndice F, figura 41.

4.8.1.2 Topografia de cluster

A segunda parte, permite inspecionar a topografia do cluster. Isto é realizado pedido a um

membro do cluster que pede a cada membro do cluster que realize uma introspeção a todos os

hubs e seus respetivos channels e sessões, esta informação é depois enviada para o dashboard

onde é transformado numa topografia. A visualização da topografia é dividida em três gráficos,

no primeiro, representado no apêndice F, figura 42 e figura 43, é demonstrado todos os

membros do cluster e o seu nome neste, adicionalmente, quando existe uma linha entre eles

significa que existe uma conexão gRPC com streaming ativa entre estes. A segunda

 MOD.IP. 108.R4.09.22

59

visualização da topografia é representada no apêndice F, figura 43 e figura 44, onde é

demonstrado a partir de uma origem como centro do gráfico todos os hubs atualmente ativos e

ligado a estes os seus channels pertencentes. Por fim, a última visualização como representado

no apêndice F, figura 45 e figura 46, é demonstrado a hierarquia de membros para hubs, para

channels e sessões. Estas visualizações da topografia do cluster foram e são fundamentais para

perceber como o cluster distribui a carga recebida e como se comporta na presença de falhas e

modificações ao número de membros no cluster.

4.8.1.3 Visualização de métricas

A terceira parte consiste na visualização das primeiras métricas previamente definidas em

todos cluster ou por tenant, em simples gráficos de linhas. Portanto no apêndice F, figura 47,

figura 48 e figura 49 temos a evolução dos channels/sessões/hubs ativos ao longo do tempo, e

nas figura 50 e figura 51 temos o número de mensagens ou bytes enviados em contraste com

os recebidos. Por fim temos 2 gráficos que foram posteriormente adicionados permitindo saber

quantas sessões foram iniciadas por dia, e qual a sua duração por dia como pode ser visto no

apêndice F figura 52 e figura 53.

4.8.1.4 Ferramenta para inspecionamento

A última parte consiste numa ferramenta que permite inspecionar o funcionamento da

aplicação. Esta utiliza o cliente desenvolvido, e fornece as funcionalidades deste numa

interface visual, como pode ser visto no apêndice F, figura 54. Esta parte, pode ser divida em

mais 3 partes. A primeira, consiste nas informações de sessão, como estado de conexão,

identificador de utilizador, informações sobre hub, informações extra de autenticação e

permissões como demonstrado no apêndice F, figura 55. A segunda parte consiste em todo o

histórico da conexão, assim como visto no apêndice F, figura 56, esta regista quando a conexão

inicia e todos eventos que recebe, aqui eventos como PING/PONG (mecanismo equivalente ao

heartbeat) são ignorados pois são muito frequentes e pouco úteis. Em cada registo na tabela é

possível inspecionar o conteúdo caso este esteja em formato de texto, caso contrário um

conjunto de bytes é apresentado. Por fim no apêndice F, figura 57, temos todos os channels a

que esta sessão está subscrita. Em cada aba, é demonstrado as funcionalidades de presença e

occupancy, em channels com PubSub o histórico de publicações é demonstrado, nos de

notificações de forma similar é demonstrado a lista de notificações e por fim como representado

na mesma figura, temos a representação de um documento que se mantém sempre atualizado.

 MOD.IP. 108.R4.09.22

60

4.8.2 Testes

Os testes são uma parte fundamental do processo de desenvolvimento de uma aplicação.

Estes ajudam a garantir que uma aplicação está a funcionar conforme o esperado, identificando

problemas de desempenho, segurança e usabilidade e permitindo reduzir o tempo e o custo do

processo de desenvolvimento. Neste projeto existem maioritariamente testes unitários e teste

de integração.

4.8.2.1 Testes unitários

Os testes unitários são uma técnica essencial de programação que consiste em testar partes

específicas e isoladas do código fonte de um programa, nomeadas de unit test. Grande parte do

código foi desenvolvido de forma modular com o objetivo de facilitar o desenvolvimento de

unit tests, e muito do código foi desenvolvido ao mesmo tempo que os unit tests para estes de

forma similar a test-driven development. Embora não exista uma cobertura de testes a 100%

do código, todo o seu código principal e lógica estão cobertos num total de 60%.

4.8.2.2 Testes de integração

Os testes de integração são utilizados para garantir que diferentes partes da aplicação

funcionem corretamente juntas. Estes testes ajudam a identificar erros e falhas que podem

ocorrer quando diferentes componentes são combinados, enquanto testes unitários focam-se

em pequenas partes de funcionamento.

4.8.2.3 Experimentação com clientes

De forma a experimentar a aplicação com tráfego real, foi pensada uma forma gradual para

expor a aplicação a utilizadores finais sem impactar caso ocorra uma falha com este, ao mesmo

tempo, vão sendo coletadas métricas de forma a procurar problemas que possam estar a ocorrer.

Sendo que o objetivo é testar a capacidade do sistema, foram utilizados servidores com baixas

especificações, com somente 0.25 vCPU e 0.5 GB de RAM.

Portanto, a exposição está a ocorrer em 4 simples fases, na primeira consiste em fazer com

que as aplicações se conectem ao sistema, sem utilizar nenhuma funcionalidade deste, somente

manter uma sessão autenticada ativa de forma a estimar quantas conexões podemos esperar por

agora, nesta primeira fase somente 2 clientes foram escolhidos como alvos.

Para a segunda fase, todos os clientes irão manter uma conexão ativa com o mesmo objetivo

da anterior, e manter um channel ativo por sessão.

 MOD.IP. 108.R4.09.22

61

Na terceira fase, será utilizada de forma a experimentar uma possível primeira

funcionalidade, em que cada sessão irá se subscrever ao item que estejam a ver utilizando a

capacidade de occupancy. Por fim, na última fase será aumentada a quantidade de dados

enviados pelas sessões, essa informação poderá ser de novas funcionalidades ou somente dados

para teste.

4.8.2.4 Resultados

Antes de expor o sistema às aplicações móveis, foi feito um teste de quantas conexões um

cluster com 3 membros seria capaz de suportar, utilizando as especificações previamente

mencionadas, e o comportamento do cluster ao adicionar ou remover membros. Neste teste,

cada membro do cluster foi capaz de suportar aproximadamente 15 mil conexões num total de

aproximadamente 45 mil conexões, não sendo capaz de ter mais conexões devido ao limite de

RAM nos servidores. Utilizando servidores com maior capacidade o cluster é capaz de

aumentar a quantidade de conexões com o mesmo número de membros, no entanto, o objetivo

é ver a capacidade de distribuição e tolerância a falhas. Estes valores são muito superiores aos

que eram esperados no sistema anterior, além de ser capaz de suportar falha dos membros sem

indisponibilizar o serviço.

O ajuste do cluster ao adicionar ou remover membros era relativamente rápido, demorando

aproximadamente 300ms, visto que este notifica os outros membros de que está ativo ou que

vai deixar de estar. Nos casos de falha, por impossibilidade de um membro notificar os outros

de que vai deixar de estar ativo, o cluster demorou aproximadamente 700ms. O motivo desta

duração deve-se principalmente à deteção do estado de atividade do membro. Naturalmente,

em clusters com maior número de membros estes ajustes vão demorar mais, mas é um

comportamento já documentado e não é problemático. É possível fazer alguns ajustes nas

configurações da implementação de gossip, no entanto, não há necessidade para alterar as

atuais.

Quanto às fases de teste com tráfego real, não foi possível obter todos os resultados antes

da produção deste documento. Visto que o projeto ainda se encontra na segunda fase de testes,

as análises de resultados são bastante limitadas.

Nas primeiras duas fases de testes com tráfego real, foi observado que o número de sessões

em simultâneo era consideravelmente inferior ao esperado, no entanto, é possível verificar que

o número de sessões é distribuído ao longo do dia, com picos relativamente pequenos.

 MOD.IP. 108.R4.09.22

62

Portanto, de forma a melhor avaliar as sessões ao longo do tempo, foi implementado a coleta

de sessões e suas durações. Com estas métricas adicionais, assim como previsto, podemos

concluir que grande parte das sessões são de curta duração, sendo a média de aproximadamente

de 2 minutos. No apêndice F, figura 29, podemos observar a distribuição de sessões ao longo

do dia, esta visualização acumula as sessões dos tenants em fase de teste. Assim como pode

ser observado, a única altura do dia onde o número de sessões é mais elevado é entre as 21 e

22 e 9 e 11 horas, nas outras alturas do dia o número de sessões é relativamente baixo. Ao

mesmo tempo, a duração de sessões é maior entre as 5 e 6 horas, assim como pode ser

observado no apêndice F, figura 30

Tirar conclusões desta informação é somente relevante quando é analisado tendo em

conta o tenant, os seus produtos e campanhas, no entanto, com esta informação podemos

analisar a carga de pedidos na aplicação, quando esta é mais esperada e utilizar esta informação

de forma a preparar o cluster para a carga esperada, embora este processo não será tido em

conta por agora.

4.8.3 Clientes

De forma a integrar a aplicação com dispositivos móveis e aplicações Web, a implementação

de clientes teve de ser criada. Por agora, as únicas plataformas alvo são Android, IOS e Web,

sendo as linguagens respetivas para cada plataforma, Kotlin, Swift e javascript. Visto protocolo

utilizar protocol buffers, utilizando as suas ferramentas foi possível gerar todo as mensagens

assim como a sua forma de serialização para cada plataforma, sendo somente necessário

implementar a gestão da conexão e sessão e a informação recebida para cada tipo de channel

sendo somente o channel do tipo document o mais complexo. Para as plataformas móveis foi

utilizado o Kotlin Multiplatform Mobile (KMM) que permite criar somente uma única

implementação para as plataformas Android e IOS. Por fim, o cliente para Web em javascript

foi desenvolvido em conjunto com o dashboard, e é utilizado na ferramenta de

inspecionamento. Existem alguns pontos importantes a serem mencionados no lado das

implementações dos clientes, sendo o protocolo e gestão de sessão.

4.8.4 Protocolo

Assim como previamente mencionado, as mensagens foram definidas com protocol buffers,

além de permitir gerar código para várias linguagens de programação, este permite também

implementar novas funcionalidades no protocolo mantendo compatibilidade com versões

anteriores, sendo necessário que o cliente saiba que versão do protocolo este utiliza. Em geral

 MOD.IP. 108.R4.09.22

63

novas versões somente irão adicionar novas propriedades ou tipos de mensagens de forma a

tentar manter o máximo de compatibilidade entre protocolos.

4.8.5 Gestão de Sessão

Sendo alguns dos alvos as plataformas móveis, é necessário que a gestão de conexão seja

capaz de lidar com desconexões abruptas e ser capaz de restabelecer a conexão de forma a

manter a sessão. Portanto, de forma a restabelecer a sessão anterior existem os mecanismos de

SessionRestore e SessionRestored com este exato objetivo. No entanto, mensagens que tenham

sido enviadas durante o período de desconexão são perdidas pelo cliente. De forma a tentar

recuperar essas mensagens, existe a funcionalidades previamente mencionada de live history,

onde o cliente pode requisitar mensagens enviadas após uma timestamp. De lembrar, que

embora estas funcionalidades existam, estas funcionam na forma de best effort não dando fortes

garantias, portanto, nestes casos o cliente deve ser capaz de ser o próprio a autenticar a sessão

de subscrever de volta aos channels e enviar a última timestamp recebida de cada, para que

estes tentem enviar as mensagens perdidas. A implementação também gere mensagens a serem

enviadas, pondo-as numa fila de envio, de forma que mensagens a serem enviadas pelo cliente

não sejam perdidas. Por fim, caso um servidor falhe, todas conexões a este têm que ser

restabelecidas, caso todas sejam feitas relativamente ao mesmo tempo, poderá ocorrer um

thundering herd, ou seja, um aumento repentino de novas conexões que podem causar que

outros servidores falharem repetindo o mesmo problema e com mais conexões. De forma evitar

um thundering herd um backoff exponencial é implementado para realizar a reconexão,

começando com uma tentativa instantânea seguida de um intervalo de tempo a multiplicar pelo

número de tentativas.

4.8.6 Escalabilidade futura

Sendo um dos pontos fundamentais deste projeto, a sua capacidade de escalar

horizontalmente, foram pré-definidas formas de aumentar a escalabilidade do sistema, caso

eventualmente seja necessário. Em primeiro lugar temos de identificar os pontos em que o

desempenho do sistema em geral pode ser impactado.

4.8.6.1 Problemas

Como primeiro ponto identificado, temos o número de conexões de clientes a uma

aplicação. Cada conexão exige a gestão de PING/PONG, o envio de mensagens e o

processamento de mensagens recebidas pelo cliente. Esta gestão pelo que foi observado

 MOD.IP. 108.R4.09.22

64

localmente, é a primeira parte a afetar o desempenho. Por exemplo, uma mensagem de channel

a ser enviada para 50 sessões exige que esta seja copiada 50 vezes para sockets no sistema

operativo, que apresenta um custo a nível de processamento e de memória, incluindo que cada

servidor tem um máximo de conexões que pode manter abertas ao mesmo tempo.

Como segundo ponto, temos o número de conexões ativas entre vários membros do cluster,

imaginando um cluster de 20 membros, é possível que um membro tenha de manter uma

conexão ativa a vários outros devido à distribuição dos channels entre todo o cluster.

Por fim, devido ao processamento de mensagens em todos os tipos de channels atuais ser

realizado serialmente, um channel com muito tráfego poderá não conseguir acompanhar a

quantidade de mensagens. Neste último ponto, pelo menos por agora, não existe uma solução

definida embora seja possível simplesmente retirar o processamento serial de cada mensagem

e distribuir entre vários threads, o que exige que a ordem das mensagens não seja mantida.

4.8.6.2 Possíveis soluções

A solução já pré-definida consiste em atribuir diferentes cargos aos membros do cluster,

idealmente de forma dinâmica. Estes cargos seriam Edge e Core, neste momento estes cargos

já estão definidos, no entanto, de forma estática nas configurações iniciais da aplicação. Um

membro com o cargo de Core irá funcionar normalmente como se não houvesse cargos,

enquanto um membro Edge, não será contabilizado como um membro de distribuição de

channels, ou seja, vai somente receber conexões de clientes e se conectar aos membros Core

quando precisa de se subscrever.

Desta forma, os membros com o cargo Core irão se focar principalmente com o

processamento de mensagens, enquanto os outros gerem somente conexões, esta solução

permite resolver tanto o primeiro como o segundo ponto. Para o primeiro ponto, podemos ter

mais membros com cargo Edge sendo que não afetam a redistribuição do cluster, e para o

segundo ponto, podendo os membros com cargo Core que serão menos, o número de conexões

entre os membros do cluster pode ser reduzido significativamente.

4.9 Diagramas

De forma a demonstrar um segmento da aplicação, temos a figura 16, nesta temos a

exemplificação dos passos ocorridos quando um cliente se subscreve a um channel que

pertence ao Node em que este está conectado e quando o mesmo cliente se subscreve a um

channel a que pertence a outro Node. Para o processo inverso de remover subscrição a processo

é o mesmo, sendo a única diferença o conteúdo enviado nas mensagens, e a publicação feita

 MOD.IP. 108.R4.09.22

65

pelo Cliente 2 não seria enviada do Node 2 para o Node 1. As mensagens enviadas entres os

clientes e Nodes podem ser observadas no apêndice G onde estão as mensagens do protocolo

relevantes para este exemplo.

Figura 16 - Flow de subscrição do cluster

Fonte: Própria

De a ter uma visualização do sistema temos o seguinte diagrama de classes na figura 17 que

se encontra incompleta e ilegível por motivos de privacidade empresarial. Este diagrama

mostra apenas as classes que representam o funcionamento principal do sistema, as

configurações da aplicação, armazenamento e definição de APIs ou não estão representadas

apresentam uma classe vazia.

 MOD.IP. 108.R4.09.22

66

Figura 17 - Diagrama de classes

Fonte: Própria

De forma a tornar este diagrama legível, iremos focar nas classes e interfaces principais, o

Engine, o ClusterNodeManager , o ChannelProcessor, o Hub, a Session e o ChannelListener.

4.9.1 Engine

O Engine é o elemento que agrega todos os componentes do sistema, este apresenta dois

métodos Start e Stop que iniciam e terminam a aplicação. Esta classe é a que recebe transforma

pedidos recebidos por outros Nodes em ações, assim como é a classe utilizada quando pedidos

na API de administração são realizados. Portanto, esta classe faz a agregação de todos os hubs

e sessões, assim como é o elemento que serve como ponte entre o ClusterNodeManager e o

hub local. Sempre que alterações são realizadas no cluster, esta classe é notificada e é

 MOD.IP. 108.R4.09.22

67

responsável por realizar o seu processo de redistribuição dos channels. A representação desta

classe pode ser observada na figura 18.

Figura 18 - Diagrama do Engine

Fonte: Própria

4.9.2 ClusterNodeManager

O ClusterNodeManager é uma interface que representa as funcionalidades que são

necessárias que os componentes que gerem o cluster sejam capazes de cumprir. Está definido

como uma interface de forma permitir que sejam criadas implementações diferentes utilizados

variações diferentes do protocolo gossip.

 MOD.IP. 108.R4.09.22

68

Para entender o funcionamento a nível interno temos a figura 24 e figura 25, ambos fazem

parte do mesmo diagrama, mas estão separadas de forma a facilitar a leitura. Na primeira figura,

pode ser observado o que ocorre quando uma sessão se subscreve a um channel que pertence

ao Node em que esta se encontrada conectada, neste caso, o hub e channel são criados e

inicializados de forma dinâmica e a sessão é adicionada como um subscritor ao channel. Na

segunda figura, pode ser observado o processo para a subscrição a um channel a que o Node

responsável por este não o mesmo que a que sessão se encontra conectada, neste caso, uma

conexão e uma stream gRPC são criadas caso não existam, assim que o Node responsável

receba a mensagem, este vai notificar o seu Engine do pedido de subscrição recebida. Este por

sua vez irá criar e inicializar o hub e channel caso já não estejam e irá adicionar a sessão como

um ChannelListener. A representação da interface pode ser observada na figura 19.

Figura 19 - Interface ClusterNodeManager

Fonte: Própria

4.9.3 ChannelProcessor

O ChannelProcessor é a interface que define os comportamentos do channel, todos os tipos

de channels como document, notification e default implementam esta interface, esta recebe os

pedidos de publicação de eventos e é responsável pelo envio por para as sessões subscritas, que

são representadas pela classe ChannelListener. A representação da interface ChannelProcessor

pode ser observada na figura 20.

 MOD.IP. 108.R4.09.22

69

Figura 20 - Interface do ChannelProcessor

Fonte: Própria

4.9.4 Hub

O Hub é a classe que representa um tenant no sistema, por esse motivo, este agrega todos

os channels e sessões pertencentes ao tenant. Sempre que é necessário inicializar ou terminar

um channel essa operação é realizada pelo hub, ou seja, o hub é a classe que permite realizar

operações a nível de um tenant. A representação da classe pode ser observada na figura 21.

Figura 21 - Diagrama do Hub

Fonte: Própria

4.9.5 Session

A Session ou sessão, é a classe que representa um cliente conectado. Atravéz da sessão os

utilizadores podem publicar eventos e subscrever a channels. Assim como previamente

mencionado, a sessão pertence sempre a um hub e pode subscrever a um channel com a sua

representação de ChannelListener. A representação da classe da sessão pode ser observada na

figura 22.

 MOD.IP. 108.R4.09.22

70

Figura 22 - Diagrama da Session

Fonte: Própria

4.9.6 ChannelListener

O ChannelListener é a interface que representa uma subscrição num channel. Sempre que

uma sessão é adicionada como subscritor a um channel esta é adicionada uma classe que

implementa esta interface. Adicionalmente, sessões remotas também são representadas por esta

interface. O diagrama da interface pode ser observado na figura 23.

Figura 23 - Interface do ChannelListener

Fonte: Própria

4.9.7 Fluxograma de subscrição

Agora que foram revistas as classes e interfaces principais, podemos ver um fluxograma dos

passos para a subscrição de um channel assim como foi representado previamente de forma

mais simples. Na figura 24 e figura 25 temos um fluxograma que foi divido em duas partes, a

 MOD.IP. 108.R4.09.22

71

primeira representa o processo de subscrição a um channel quando o Node é responsável, ou

subscrição a um channel local, na segunda parte é representado o processo quando o channel

pertence a outro membro do cluster.

Figura 24 - Subscrição a um channel local

Fonte: Própria

 MOD.IP. 108.R4.09.22

72

Figura 25 - Subscrição a um channel remoto

Fonte: Própria

 MOD.IP. 108.R4.09.22

73

Este processo de subscrição é representado pelo segmento código presente na aplicação que

está representado na figura 26. Neste segmento de código já é assumido que a sessão tem

permissão para subscrever ao channel. Assim que esta função é invocada, esta calcula o Node

responsável pelo channel, caso seja local este é criado caso não esteja e a sessão é adicionada

como ChannelListener. Se o channel pertencer a um Node remoto, este faz um pedido de

subscrição ao Node.

Figura 26 - Função de subscrever a um channel

Fonte: Própria

 MOD.IP. 108.R4.09.22

74

5 DISCUSSÃO DE RESULTADOS

Assim como previamente mencionado, antes de expor o novo sistema às aplicações móveis,

foi feito um teste de quantas conexões um cluster com 3 membros seria capaz de suportar, em

servidores com somente 0.25 vCPU e 0.5 GB de RAM. Neste teste, cada membro do cluster foi

capaz de suportar aproximadamente 15 mil conexões num total de aproximadamente 45 mil

conexões, não sendo capaz de ter mais conexões devido ao limite de RAM nos servidores.

Utilizando servidores com maior capacidade o cluster é capaz de aumentar a quantidade de

conexões com o mesmo número de membros, no entanto, o objetivo era ver a capacidade de

distribuição e tolerância a falhas. Estes valores obtidos são muito superiores aos 9000

atualmente esperados, além de ser capaz de suportar falha dos membros sem indisponibilizar

o serviço.

Após o teste de conexões foi realizado outro teste com o objetivo de avaliar o tempo que

um cluster demora a ajustar os channels pelos membros. Neste teste existem 3 membros no

cluster e um quarto é adicionado normalmente e removido repentinamente de forma a simular

uma falha. Após cada ajuste é coletado a partir dos logs de cada membro o tempo que o ajuste

demorou em milissegundos, para clarificar, só é apontado a duração do ajuste e não de deteção

que o membro foi adicionado ou removido.

Para este teste, foram escolhidas 4 variações com 5 rondas cada, nestas variam o número de

channels e o número de clientes, no entanto estes não ultrapassam dos 3. As 4 variações são as

seguintes:

o 1ª Variação:

o 1 cliente conectado ao Node 1;

o 500 channels;

o Identificador de channels em UUIDs (Universal Unique IDentifiers).

o 2ª Variação:

o 3 clientes, um conectado a cada Node.

o 1500 channels;

o Identificador de channels em conjunto de 20 caracteres aleatórios.

o 3ª Variação:

o 3 clientes, um conectado a cada Node.

o 4500 channels;

o Identificador de channels em conjunto de 40 caracteres aleatórios.

o 4ª Variação:

 MOD.IP. 108.R4.09.22

75

o 50 clientes distribuídos pelos Nodes.

o 100000 channels;

o Identificador de channels em conjunto de 40 caracteres aleatórios.

A diferença nos identificadores do channels deve-se ao posicionamento no hash ring. Na

primeira variação grande parte dos identificadores channels eram semelhantes, o que levava

que estes tivessem o mesmo Node como responsável. Com os identificadores gerados

aleatoriamente houve uma melhor distribuição pelos Nodes, assim como pode ser observado

nos resultados representados na figura 27 e figura 28.

Figura 27 - Tempo médio de redistribuição no cluster em milissegundos (Adicionar)

Fonte: Própria

0

2000

4000

6000

8000

10000

12000

14000

16000

1ª Variação 2ª Variação 3ª Variação 4ª Variação

Tempo médio de redistribuição no cluster em

milissegundos (Adicionar)

Node 1 Node 2 Node 3

 MOD.IP. 108.R4.09.22

76

Figura 28 - Tempo médio de redistribuição no cluster em milissegundos (Remover)

Fonte: Própria

A diferença entre de desempenho entre o adicionar ou remover um membro do cluster deve-

se ao processo de remover um membro do cluster ser mais eficiente. Neste processo sabemos

o identificador do Node que saiu o que permite que seja calculado de forma eficiente quais

channels devem ser movidos, adicionalmente, numa redistribuição ao adicionar um membro é

necessário notificar o membro do cluster previamente responsável de que não tem mais

interesse nos channels a que estes pertenciam, este passo não acontece quando um membro é

removido. O tempo de ajuste destas variações vai subindo de acordo com o número de channels

ativos no cluster, sendo que quando observamos o salto da segunda para a terceira variação do

teste o tempo de ajuste sobe consideravelmente, inclusive não foi possível realizar a quarta

variação do teste devido ao tempo que o cluster fica em ajustes. Após analisar os o que leva a

este considerável aumento, foi identificado que o atraso se deve à forma como a movimentação

dos channels e das conexões gRPC para os novos responsáveis é realizada. Este processo é

feito de forma individual, ou seja, um channel de cada vez. Este processo foi melhorado

drasticamente, agrupando todos as alterações a serem realizadas por membro num conjunto e

enviar somente uma mensagem por cada conjunto de operações, adicionalmente, este processo

foi também paralelizado. Esta alteração resultou nos resultados apresentados da quarta

variação.

Quanto ao tempo que leva a adicionar ou remover um Node ao cluster é de aproximadamente

16ms, para a deteção de falha do tempo é entre 120 a 500ms. De forma a obter os 16ms, foi

registado o tempo em que o Node descobre os endereços dos outros membros e o tempo em

0

20000

40000

60000

80000

100000

120000

140000

1ª Variação 2ª Variação 3ª Variação 4ª Variação

Tempo médio de redistribuição no cluster em

milissegundos (Remover)

Node 1 Node 2 Node 3

 MOD.IP. 108.R4.09.22

77

que este se juntou a pelo menos um dos membros do cluster. Para o tempo de deteção de falha

foi comparado o tempo em que o Node foi terminado com o tempo que um dos Nodes detetou

a falha, os intervalos entres estes dois tempos foram muito variados sendo os valores mais

comuns entre 120 a 500ms.

Quanto às fases de teste com tráfego real, não foi possível obter todos os resultados antes

da produção deste documento. Visto que o projeto ainda se encontra na segunda fase de testes,

as análises de resultados são bastante limitadas.

Nas primeiras duas fases de testes com tráfego real, foi observado que o número de sessões

em simultâneo era consideravelmente inferior ao esperado, no entanto, é possível verificar que

o número de sessões é distribuído ao longo do dia, com picos relativamente pequenos.

Na figura 29, podemos observar a distribuição de sessões ao longo do dia, esta visualização

acumula as sessões dos tenants em fase de teste.

Figura 29 - Distribuição de sessões por hora

Fonte: Própria

Na figura 30, temos a representação da duração média de sessão a cada hora do dia. Assim

como pode ser observado as durações das sessões são relativamente baixas, sendo assim com

o apresentado as 16 horas na mesma figura.

0

2000

4000

6000

8000

10000

12000

Sessões por hora

Sessões por hora

 MOD.IP. 108.R4.09.22

78

Figura 30 – Média de duração de sessão por hora

Fonte: Própria

Até ao momento de que este documento foi desenvolvido, já foram em enviadas 12 706 780

mensagens e recebidas 12 706 690 mensagens, com um total de 173 977 sessões estabelecidas

com 2802 sessões diárias em média, e com soma de duração destas de 23 757 458 segundos ou

aproximadamente 6600 horas e duração média de 2 minutos.

Devido à falta de métricas coletadas pelo sistema anterior não é possível fazer uma

comparação entre os resultados novo sistema com os resultados do sistema anterior.

0

50

100

150

200

250

300

350

400

450

Média de duração de sessão por hora em segundos

Média de duração de sessão por hora em segundos

 MOD.IP. 108.R4.09.22

79

6 CONCLUSÃO

Em conclusão, o novo sistema distribuído apresenta uma solução satisfatória para os

problemas encontrados no sistema antigo, com melhorias significativas na escalabilidade, na

tolerância a falhas e na monitorização. Adicionalmente, todas as funcionalidades do antigo

sistema foram mantidas enquanto novas foram adicionadas, permitindo também adicionar

futuras funcionalidades graças à sua arquitetura. Embora algumas funcionalidades, como

Streams e push notifications, ainda não estejam completas, foram identificadas oportunidades

para melhorias futuras.

O novo sistema atingiu todos os objetivos estabelecidos, incluindo escalabilidade horizontal,

comunicação bidirecional entre cliente e servidor, comunicação utilizando Pub/Sub em tópicos,

restrição de acesso a tópicos, suporte para múltiplos tenants, criação explícita de tópicos,

rastreamento de presença de clientes em cada tópico e armazenamento de mensagens enviadas

em cada tópico.

Os próximos passos para o sistema são planear o escalamento global e o routing inteligente,

tendo em conta a latência entre o servidor e o cliente, garantindo que o sistema possa lidar com

um número maior de utilizadores e volume maior de dados.

 MOD.IP. 108.R4.09.22

80

PARTE II – ARTIGO CIENTÍFICO

AppSockets
Tiago Marques Soares Lima

Estudante do 3ºano da Licenciatura em Engenharia Informática

 do ISTEC Porto

Resumo: Este artigo descreve uma

aplicação para um sistema de comunicação

em soft real-time, com o objetivo de

substituir um sistema anteriormente

utilizado. Através do protocolo gossip, hash

ring e gRPC, foi criada uma aplicação

distribuída que é capaz de escalar

horizontalmente, permitindo a substituição

do sistema anterior utilizado na empresa

NAPPS, enquanto matem todas as suas

funcionalidades.

Palavras-chave: Soft Real-Time,

Publicar/Subscrever, WebSockets, Message

Broker

Abstract: This article describes an

application for soft real-time

communication system, with the purpose of

replacing a previously used system. Using

the protocol gossip, hash ring, and gRPC

technologies, a horizontally scalable

distributed application was created, which

is capable of replacing the previous system

at NAPPS while maintaining all of its

functionalities.

Keywords: Soft Real-Time, Publish/Subscribe,

WebSockets, Message Broker.

I. Introdução

 Neste artigo é explicado a criação

de infraestrutura para o envio de

informação em soft real-time entre clientes

e servidores, e ao mesmo tempo substituir

um sistema com objetivos similares,

mantendo o máximo de compatibilidade

possível de forma a facilitar a migração

para o novo sistema.

A. Motivação

A aplicação desenvolvida consiste num

sistema Publish/Subscribe com suporte

para múltiplos tenants, onde existem

elementos que subscrevem a um tópico

(Subscribe) e recebem todas mensagens ou

eventos publicados neste mesmo tópico

(Publish).

O sistema criado tem como propósito

substituir o sistema anterior enquanto

mantém todas as suas funcionalidades,

adiciona novas funcionalidades e facilita a

sua utilização.

As motivações para o desenvolvimento

deste novo sistema foram baseadas em

alguns pontos principais, sendo estes:

● O sistema a ser substituído não ser

horizontalmente escalável;

● A não existência de ferramentas de

monitorização e deteção de erros;

● Arquitetura não preparada para

novas funcionalidades;

● Falta de testes no projeto.

O sistema a ser substituído, foi

desenvolvido de forma rápida, e durante o

seu desenvolvimento não existia a

necessidade de que este fosse

horizontalmente escalável, e a adaptação

seria complicada exigindo modificar

grande parte do seu funcionamento.

Inicialmente, este sistema foi projetado

para ser utilizado maioritariamente por

dashboards e backoffices como

subscritores enquanto alguns eventos eram

emitidos por outros servidores. No entanto,

novas funcionalidades a serem planeadas

81

necessitam que a utilização deste sistema

seja ampliada para a aplicações móveis,

onde existe um valor muito mais elevado de

conexões a serem realizadas, de forma a

quantificar a diferença de conexões

esperadas, no sistema a ser substituído era

somente esperado ter no máximo 50

conexões diárias, um valor muito baixo,

enquanto o valor esperado para os

utilizadores atuais é de aproximadamente

9000 conexões, um valor muito superior.

Adicionalmente, sempre que se adquira um

novo cliente, é esperado que este valor suba

entre algumas centenas a alguns milhares

(aproximadamente entre 600 e 2000), sendo

que o novo sistema tem de ser capaz de

capaz de suportar este aumento de

utilizadores. Outro ponto relacionado com

a necessidade de escalar horizontalmente,

consiste em permitir que o sistema seja

tolerante a falhas, algo que não é possível

se somente um servidor puder ser

executado ao mesmo tempo. O motivo pelo

qual o sistema não é horizontalmente

escalável, deve-se ao funcionamento geral

de um sistema de comunicação PubSub,

onde independentemente do servidor o

cliente está conectado, este tem de receber

eventos que podem ser enviados noutros

servidores.

A inexistência de ferramentas de

monitorização e de deteção erros dificulta a

manutenção do sistema, no entanto, sendo

que nenhuma funcionalidade em que este

era utilizada era considerada crítica, não

houve nenhum incentivo para desenvolver

estas, no entanto, sendo que este sistema

passou a ser utilizado por clientes finais, é

importante ser capaz de identificar os erros

o mais rápido possível, assim como ser

capaz de monitorizar a sua utilização de

forma a planear o melhor possível o

escalamento automático.

II. Objetivos

 Tendo sido explicado os problemas

que levaram a desenvolver um novo

sistema, é necessário definir os objetivos a

serem cumpridos pelo novo sistema,

lembrando que o novo sistema vai substituir

um existente, é necessário que este seja

capaz de suportar os casos de uso atuais,

assim como criar o máximo de

compatibilidade possível. Portanto, sendo

os requerimentos do novo sistema similares

com o anterior em produção, é necessário

analisar como o atual funciona e ver que

problemas apresenta. Os principais pontos

a ter em conta no projeto são:

• Comunicação bidirecional entre cliente e

servidor através WebSockets;

• Comunicação usando Pub/Sub (publicar e

subscrever) em tópicos (nomeados de

channels);

• Restringir o acesso a tópicos de acordo

com as autorizações;

• Suporte para múltiplos tenants, existindo

configurações por cada tenant;

• Criação explícita de tópicos e com

configurações por cada;

• Rastreamento da presença dos clientes em

cada tópico;

• Armazenamento das mensagens enviadas

em cada tópico.

III. Estado da Arte

 Nesta parte vai ser mencionado

técnicas utilizadas para enviar informação

em tempo real tem evoluído, protocolos que

tenham vindo a ser criados e qual foi o

escolhido para este projeto.

Adicionalmente, são selecionados projetos

de código aberto e serviços comerciais que

podem potencialmente ser utilizados de

forma a tentar a cumprir os objetivos deste

projeto.

82

A. Evolução de comunicação em tempo

real

Comunicação em tempo real não é um

tópico novo e está presente em várias

aplicações, principalmente em aplicações

de mensagens, no entanto, em aplicações

web nem sempre existiu uma forma de criar

uma ligação bidirecional entre cliente e

servidor. Sendo necessário que aplicações

web tenham a possibilidade de realizar uma

comunicação com os servidores primeiro é

necessário conhecer as opções existentes e

como estas foram evoluindo.

Inicialmente, em aplicações Web não

existia a possibilidade de criar ligações

bidirecionais com servidores utilizando as

APIs fornecidas pelos browsers, de forma a

resolver esta limitação, em 2011 um novo

protocolo foi padronizado Fette e Melnikov

[1] como RFC 6455, este protocolo ficou

conhecido como WebSockets e é atualmente

a forma padrão de comunicação

bidirecional com servidores em aplicações

Web. Em outras aplicações não web, estas

limitações não existiam, portanto cabia a

cada desenvolvedor utilizar a sua

implementação ou reutilizar uma existente.

Antes da criação do protocolo

WebSockets, a técnica long polling era uma

forma comum de simular comunicação

bidirecional, assim como mencionado pela

Internet Engineering Task Force [1], “web

applications that need bidirectional

communication between a client and a

server [...] has required an abuse of HTTP

to poll the server for updates while sending

upstream notifications as distinct HTTP

calls” (The WebSocket Protocol) (capítulo

1.1, 1º parágrafo), visto que os pedidos

HTTP funcionam como request-reply

(pergunta-resposta) de forma unidirecional

(cliente para servidor), não existia forma de

um servidor notificar o utilizador que um

evento tenha acontecido no momento, ou

seja, uma aplicação cliente teria que

periodicamente realizar um pedido HTTP

ao servidor de forma a verificar que novos

eventos tenham ocorrido. Tendo como

exemplo uma aplicação de chat, onde

existem largos períodos sem atividade, é

possível que grande parte destes pedidos

não tenham informação nova

desperdiçando recursos, ou então, caso o

período entre pedidos seja longo é possível

que demore demasiado tempo para receber

nova informação. Utilizando o mesmo

exemplo, numa conversa entre duas pessoas

e com intervalo entre pedidos de 5

segundos, uma mensagem pode demorar

até esse mesmo intervalo só para ser

recebida pela outra pessoa.

De forma a evitar a quantidade de

pedidos realizados e a reduzir o tempo que

demora a receber informação, o servidor

artificialmente demora mais tempo para

enviar uma resposta, esperando que exista

nova informação ou que tempo limite de

conexão tenha sido atingido. Esta parte é a

origem do nome Long na técnica Polling.

Desta forma, o tempo de atraso a receber a

mensagem seria no máximo o tempo de

receber a última resposta mais o tempo de

iniciar um novo pedido, algo que poderia

demorar segundos que passou para

milissegundos, além de reduzir

consideravelmente a quantidade de pedidos

a serem feitos.

Com a criação do protocolo WebSockets,

a técnica long polling deixou de ser usada

em novos projetos e serve como alternativa

caso uma conexão WebSocket não seja

possível. No entanto, embora WebSockets

seja o padrão existem outras opções para

permitir que o servidor comunique com o

cliente tais como: Server-Sent Events, Web

Push e HTTP Streaming.

Server-Sent Events ou SSE, assim como

definido por Roome e Yang [2] no RFC

8895, permite ao servidor enviar

informação para o cliente por HTTP pela

duração da conexão, ao contrário do

protocolo WebSockets, este somente

permite uma comunicação unidirecional de

servidor para cliente, e não suporta o envio

de informação em formato binário. Visto

que este protocolo somente permite o envio

de informação de servidor para cliente,

pedidos adicionais têm de ser feitos caso o

83

cliente precise de enviar informação para o

servidor.

O Web Push, conforme definido por

Thomson e Damaggio [3] no RFC 8030,

torna possível o envio de informação para o

cliente, no entanto, este costuma ser

utilizado para o envio de notificações e não

de dados em geral, sendo as mensagens

enviadas acompanhadas por título,

conteúdo, e exigem que os clientes aceitem

uma permissão para receber esta

informação. Embora esta opção não seja

adequada para envio de informação em

tempo real, esta pode servir como

alternativa para o envio de informação

quando é necessário que a informação seja

recebida mesmo que o cliente não esteja

ligado a um dos servidores.

O HTTP Streaming é relativamente

similar ao Server-Sent Events, este também

permite o envio de informação para o

cliente de forma unidirecional. Este

funciona enviando informação sem

tamanho definido, pondo a aplicação

cliente constantemente à espera dos

próximos dados até a conclusão do pedido

HTTP.

Tendo revisto os meios de comunicação

disponíveis, o protocolo WebSockets

aparenta ser a melhor opção,

principalmente por ser o protocolo padrão

na indústria e pela sua capacidade de

comunicação bidirecional, no entanto,

outros protocolos poderão ser

implementados quando a bidirecionalidade

não for necessária, preferencialmente

utilizando Server-Sent Events.

Escolhido o protocolo WebSockets,

convém conhecer o seu funcionamento,

assim como mencionado previamente, este

permite comunicação bidirecional entre

cliente e servidor, esta é estabelecida

utilizando HTTP inicialmente que após um

handshake é estabelecida. Este protocolo é

fundamentalmente dividido em duas partes:

o handshake e a transferência de dados.

No handshake, o pedido é realizado pelo

cliente enviando a intenção de transformar

a conexão unidirecional em uma

bidirecional (com o nome de Upgrade no

protocolo) ao qual o servidor deverá

responder que está a trocar o protocolo,

após esta parte a conexão é considerada

estabelecida. Na transferência de dados, é

usado o conceito de mensagens, sendo cada

composta por um ou mais frames. Cada

frame tem um tipo associado, tendo cada

frame pertencente à mesma mensagem o

mesmo tipo. De forma geral, existem 3

tipos de dados, sendo textual, binário e de

controle. No tipo textual a informação é

interpretada como UTF-8 enquanto no tipo

binário a interpretação é deixada à

responsabilidade da aplicação, para o

controle, que não tem como objetivo

transferir dados da aplicação, são usados

como sinalização da conexão, como por

exemplo PING, PONG e CLOSE. Estes

últimos PING e PONG tem como propósito

verificar se a conexão ainda se encontra

ativa, principalmente quando a aplicação

envolve pouco tráfego. O transporte de

mensagens numa conexão com protocolo

WebSocket é similar a uma conexão TCP,

este apenas junta um mecanismo de

framing que reduz essa responsabilidade na

aplicação, quanto ao formato dos frames

não será mencionado tendo em conta que

não faz parte do objetivo deste documento.

B. Soluções existentes

Tendo em conta o protocolo escolhido e

os pontos a serem considerados, foi

realizada pesquisa sobre soluções já

existentes que suportam os pontos definidos

e ao mesmo tempo tentar perceber de que

forma estas soluções estruturam as soluções

e o que estas permitem. Estas soluções

incluem tanto projetos e bibliotecas de

código aberto como serviços, as principais

soluções encontradas são as seguintes.

 Código aberto:

o Centrifugo;

o Mercure;

o Phoenix;

o VerneMQ;

o Emitter;

84

o HiveMQ;

o EMQX;

o SocketCluster;

o Soketi;

o Signal-R;

 Serviços:

o Ably;

o PubNub;

o Pusher;

o Fanout.

Deste conjunto existem algumas opções

que funcionam como um broker de

mensagens, utilizando protocolos já

existentes como MQTT, deste conjunto

temos os seguintes:

Centrifugo [4] é uma aplicação que serve

como um broker de mensagens. Esta

aplicação suporta a distribuição de

mensagens com os protocolos WebSockets

e gRPC e com o envio de mensagens por

pedido HTTP. É possível de escalar

horizontalmente utilizando através da

utilização de um dos engines suportados

pela aplicação. De forma a permitir que os

clientes possam enviar mensagens, estes

precisam de uma autorização extra criada

por servidores, ou que estes sirvam como

intermediários para o envio de mensagens.

O Mercure [5] é um broker de

mensagens, com distribuição de mensagens

utilizando SSE (unidirecional) e com o

envio de mensagens por pedido HTTP. A

possibilidade de escalar horizontalmente

exige o uso de um serviço oferecido pelos

desenvolvedores para a gestão da

infraestrutura. Sendo o protocolo de

comunicação principal SSE este remove a

possibilidade de comunicação bidirecional,

para que os clientes possam enviar

mensagens, precisam de uma autorização

extra criada por servidores, ou que estes

sirvam como intermediários para o envio de

mensagens.

O Phoenix Framework [6] é um

framework para a linguagem de

programação Elixir, com suporte para

comunicação em tempo real e escalável

horizontalmente. Sendo desenvolvido em

Elixir permite a utilização da Erlang VM,

desenvolvida com suporte para tolerância a

falhas e maioritariamente utilizada em

sistemas de telecomunicações tornando

uma excelente escolha. O protocolo de

comunicação é utilizado é WebSockets e

tem suporte para praticamente todos os

outros protocolos sendo WebSockets o

principal. Infelizmente, Elixir ou Erlang

são linguagens ao qual não existe

conhecimento interno para a sua utilização.

VerneMQ [7], HiveMQ [8], Emitter [9] e

EMQ [10] são tecnologias são baseadas no

protocolo MQTT, embora com algumas

diferenças nas suas implementações, todas

estas oferecem possibilidade de escalar

horizontalmente. A utilização do protocolo

MQTT permite que a comunicação seja

feita diretamente por TCP ou WebSockets.

O protocolo MQTT tem como meio de

comunicação principal Pub/Sub, no

entanto, algumas funcionalidades extras

podem a vir ser necessárias, algo que

podem ser implementadas utilizando

tópicos no MQTT.

SocketCluster [11] é uma biblioteca de

javascript que permite a comunicação no

formato de Pub/Sub e é capaz de escalar

horizontalmente. Infelizmente a

documentação não é extensiva,

principalmente quanto ao subprotocolo.

Adicionalmente, esta opção tem como

objetivo primário servir como processador

direto das mensagens recebidas, enquanto o

objetivo pretendido é somente a

distribuição, mas é possível adaptar para o

caso necessário.

Soketi [12] é um servidor de WebSockets

compatível com o subprotocolo Pusher v7,

permitindo que clientes desenvolvidos para

esta plataforma possam ser reutilizados,

adicionalmente, é capaz de escalar

horizontalmente através da aplicação Redis.

Signal-R [13] é uma biblioteca criada

pela Microsoft que oferece a possibilidade

85

de comunicação em tempo real com

clientes, esta biblioteca funciona somente

em servidores desenvolvidos em C# com a

tecnologia ASP.NET. Esta opção é capaz de

escalar utilizando a aplicação adicional

Redis ou um serviço desenvolvido pela

Microsoft disponível na Azure Cloud.

Desta lista de opções com código aberto

a opção que mais se adequa é o framework

Phoenix. Este é desenvolvido em elixir que

por sua vez é executado na Erlang VM, a

qual tem acesso a um conjunto de

bibliotecas nomeadas de OTP (Open

Telecom Platform) que facilita o

desenvolvimento de aplicações

distribuídas. Adicionalmente esta

linguagem é utilizada por grandes

plataformas como WeChat e WhatsApps,

que servem como comprovativo para a sua

escalabilidade. No entanto, Elixir ou Erlang

são linguagens ao qual não existe

conhecimento interno para a sua utilização.

Quanto à opção Mercure, esta não

suporta o envio de mensagens

bidirecionais, incluindo de clientes não

autenticados, este exige que outros

servidores sejam capazes de enviar

mensagens pelos clientes ou que sirvam

como meio de autenticação dos mesmos.

VerneMQ, HiveMQ, Emitter e EMQ são

possíveis opções, no entanto estas ficam

somente pelo protocolo MQTT, no entanto

funcionalidades adicionais além das

definidas no protocolo MQTT, teriam de ser

desenvolvidas à parte, visto que o suporte

para modificações é relativamente

reduzido.

A opção Soketi, apresenta dois

problemas, primeiro ser desenvolvida em

javascript que por sua vez é executado em

node.js, embora seja plataformas viáveis,

este tipo de aplicação exige processamento

simultâneo e paralelismo, tendo em conta

que o node.js é executado como um

processo de um único thread, este apresenta

desvantagens quanto as outras

possibilidades, adicionalmente, para

utilizar eficientemente os recursos

disponíveis seria necessário várias

instâncias da mesma aplicação a correr em

simultâneo com espaços de memória

separados.

Por fim, Signal-R é uma boa opção para

empresas que já usam C#, no entanto, este

não é o caso, adicionalmente, de forma a

escalar horizontalmente a aplicação Redis

pode ser utilizada, mas o principal método

é com um serviço desenvolvido pela

Microsoft disponível na Azure Cloud, algo

que também não é usado internamente.

Quanto aos serviços, a maior parte

destes oferecem uma plataforma para a

comunicação em tempo real, com suporte

com vários protocolos e com escalabilidade

gerida, no entanto, grande parte destes tem

limitações no número de conexões.

Ably [14] é uma plataforma de

mensagens Pub/Sub com garantia de envio,

ordem de envio, e com suporte para vários

protocolos tais como MQTT, STOMP,

AMQP, PUSHER e PubNub. Permite

conexões com os protocolos WebSockets,

SSE e o envio de mensagens por HTTP.

Adicionalmente, permite o rastreamento da

presença dos clientes, envio de notificações

push, oferece um histórico de mensagens e

com suporte para restaurar desconexões

abruptas.

PubNub Inc [15] é uma plataforma de

mensagens Pub/Sub sem garantia de envio

ou ordem de envio, os protocolos utilizados

não são especificados, no entanto, segundo

os exemplos apresentados utilizam a

técnica long-polling. Esta plataforma

também permite o rastreamento da presença

dos clientes, envio de notificações push e

processamento de mensagens enviadas.

Pusher Ltd [16] é uma plataforma

similar às anteriores, funciona igualmente

com mensagens Pub/Sub mas sem garantia

de ordem e envio. Esta utiliza conexões

com o protocolo WebSockets e sub-

protocolo Pusher, um protocolo

proprietário. Assim como as opções

anteriores também permite o rastreamento

86

da presença dos clientes. Algumas

funcionalidades que não oferecem são um

histórico de mensagens, recuperação de

mensagens perdidas. Notificações push são

possíveis, mas fazem parte de um serviço à

parte oferecido pela mesma empresa.

Fanout [17] é uma que opção oferece

tanto uma versão com código aberto quanto

um serviço. A opção de código aberto serve

como um intermediário entre outros

serviços onde estes podem enviar

atualizações para serem distribuídas pelos

clientes, esta opção não é horizontalmente

escalável sem adaptação dos serviços para

o envio de mensagens utilizando um

protocolo de comunicação ZeroMQ ou

então publicando para todas as instâncias. A

versão de serviço, oferece mais

funcionalidades, como organização de

channels (equivalente a um tópico) por

realms (um elemento que agrupa channels).

Ambas opções permitem conexões com os

protocolos WebSocket, SSE e long-polling.

Ao contrário das opções anteriores, o

rastreamento da presença de clientes, envio

de notificações push não suportadas,

adicionalmente o suporte para ordem e

garantia de envio das mensagens é parcial.

Estas quatro opções, são plataformas que

oferecem uma maior abstração aos sistemas

Pub/Sub, estas oferecem funcionalidades

tipicamente não existentes em um message

broker tais como o rastreamento de

presenças, envio de notificações push e

histórico de mensagens. Desenvolver estas

funcionalidades em algumas das opções

apresentadas que não as oferecem

necessitam modificações no projeto em si,

algo que iria exigir familiaridade com o

funcionamento interno destes. Quanto às

plataformas apresentadas, nomeadamente

Ably, PubNub, Pusher e Fanout, as que

mais cumprem os pontos a ter em

consideração são Ably, Pusher e PubNub na

ordem que melhor cumprem. Embora estas

opções não tenham integração com a

aplicação NATS, seria possível adaptar para

o que a plataforma oferece ou então

desenvolver uma ferramenta adicional que

se realiza a conversão.

A plataforma Pusher quando falamos de

meios de comunicação e funcionamento

dos mesmos, cumpre os requisitos,

incluindo o rastreamento de presença

através de tópicos especializados para o

caso, tópicos públicos e privados utilizando

um prefixo no seu nome. No entanto,

nenhum dos tipos de tópicos tem a

capacidade de armazenar um histórico de

mensagens. Outro problema comum em

plataformas, que ocorre neste caso é o

número de conexões, cada loja tem a sua

aplicação e o seu conjunto de clientes, e a

empresa tem de estar preparada para uma

elevada quantidade de conexões em

simultâneo, no caso do Pusher o plano

maior listado oferece no máximo 30 mil

conexões, exigindo além disso negociar

com a empresa.

A plataforma PubNub, não estabelece

conexões utilizando o protocolo

WebSocket, em vez disso utiliza pedidos

HTTP e uma espécie de long-polling o

custo de performance e energia para as

aplicações acabar por ser mais elevado, e

não sendo uma conexão bidirecional este

não permite o envio bidirecional de

mensagens, no entanto, todas outras

funcionalidades estão presentes.

Por fim, Ably é a plataforma que melhor

cumpre os pontos previamente

mencionados, esta permite conexões por

WebSockets e outros protocolos,

rastreamento de presenças, garantia na

ordem e entrega de mensagens,

armazenamento opcional das mensagens, e

agrupamento de tópicos permitindo um

conjunto de tópicos ter a mesma

configuração. No entanto, assim como no

Pusher o limite de conexões se mantém.

C. Solução personalizada

Após todas estas possibilidade terem

sido analisadas, foi decidido desenvolver

um novo sistema em vez de reutilizar as

87

opções mencionadas pelos seguintes

motivos:

 Extensibilidade;

 Limites da API;

 Adaptação ao caso de uso;

 Imprevisão de custo;

 Conhecimento existente na

empresa.

Muitos destes serviços oferecem

sistemas simples de PubSub, no entanto,

pouca personalização além disso, sendo que

caso seja necessário funcionalidades além

das oferecidas em conjunto com o sistema

PubSub, é necessário as desenvolver num

sistema separado. Por exemplo, um sistema

de presença em conjunto com meta dados

sobre todos utilizadores subscritos num

tópico é uma funcionalidade que pode estar

embutida num tópico, mas desenvolver um

sistema só para esta funcionalidade não é

prático.

Dentro de todos serviços apresentados, o

que mais se destacou por ser o mais

próximo de atender a todos requisitos é o

serviço Ably, no entanto, assim como os

serviços em geral apresenta limites na

utilização da sua API, como por exemplo,

limites de eventos num tópico por segundo

e máximo de utilizadores subscritos num

channel. Adicionalmente, sendo o número

de conexões um valor que flutua bastante,

assim como o número de eventos enviados

para tópicos, prever os custos dos serviços

torna-se difícil e sem forma de implementar

um teto máximo

Quanto às opções de código aberto,

muitas destas não cumprem os requisitos

necessários, sendo necessário adaptar os

projetos e ter o custo extra de manutenção

de manter o projeto atualizado com novas

funcionalidades implementadas no código

base. De todas as opções, a que melhor

cumpre os requisitos necessários é o

framework Phoenix, utilizando a tecnologia

presente na Erlang VM este permite criar

um sistema distribuído, e adicionalmente o

framework Phoenix permite customizar o

funcionamento dos tópicos. No entanto,

este framework utiliza as linguagens Elixir

e Erlang, que são linguagem ao qual não

existe conhecimento interno para sua

utilização.

Tendo esta informação em conta, a

criação de um novo sistema foi o caminho

decidido de forma reutilizar o

conhecimento existente da linguagem Go

[18] e ferramentas já utilizadas

internamente como a aplicação NATS.

IV. Metodologia

Para levantamento de requisitos, foi usado

como base o sistema já presente em

produção, visto que grande parte das suas

funcionalidades são necessárias por outros

serviços dentro da empresa NAPPS.

Estando a substituir um sistema em

utilização internamente, já existe um

conhecimento prévio de problemas que

existiam, ou melhorias desejadas. Portanto,

utilizando o feedback dos utilizadores do

sistema, em conjunto com funcionalidades

futuras previstas, foi realizado um

brainstorming onde se definiu o que o

projeto precisava, assim como vai ser visto

ao longo deste documento.

A. Tarefas

O projeto está dividido em várias tarefas,

algumas das tarefas vão envolver vários

pontos que serão descobertos ao longo da

fase de pesquisa e possivelmente em

adaptações a novas funcionalidades. As

tarefas definidas até ao momento são:

 Tarefa 1 – Pesquisa de possíveis

soluções existentes e avaliação das

mesmas;

 Tarefa 2 – Pesquisa do

funcionamento das atuais soluções;

 Tarefa 3 – Elaborar funcionamento

do projeto;

 Tarefa 4 – Avaliar possíveis

problemas de migração para novo

projeto;

 Tarefa 5 – Desenvolvimento de

protótipo;

88

 Tarefa 6 – Teste de protótipo e

avaliar possíveis problemas;

 Tarefa 7 – Corrigir possíveis

problemas ou adaptar para

possíveis utilizações;

 Tarefa 8 – Teste em Cloud (AWS);

 Tarefa 9 – Criação de testes para

cobrir lógica de projeto;

 Tarefa 10 – Implementação em

produção em fase de teste.

Após mencionadas as tarefas para

realização, passo a elaborar o que cada

constitui.

Na tarefa 1, é realizada uma pesquisa por

possíveis soluções comerciais ou de código

aberto e análise rápida se estas podem

cobrir os casos de utilização atual, na tarefa

2 após a eliminação de soluções que não se

adaptam aos casos de utilização, iremos

verificar mais profundamente o seu

funcionamento, e como se comportaria em

funcionalidades planeadas e custos para as

mesmas. Utilizando o conhecimento do

funcionamento obtido pelas tarefas 1 e 2, é

elaborado um plano geral com todas as

funcionalidades necessárias e o seu

funcionamento interno, após esta será

elaborado uma análise de problemas que

possam existir ao realizar a migração do

projeto anterior para o atual, quanto menor

o custo de migração menor será o tempo

para introduzir em produção e atualização

de sistemas em produção, e esta etapa será

a tarefa 4.

Após ter sido realizada uma análise do

funcionamento e tendo sido verificado

possíveis partes problemáticas, é realizado

o desenvolvimento de um protótipo do

projeto como tarefa 5, os testes mais

manuais serão realizados e serão avaliados

possíveis problemas que tenham ocorrido,

este passo corresponde à tarefa 6, para

tarefa 7, será a correção dos erros que

tenham sido encontrados e adaptação para

funcionalidades que tenham surgido ou

adaptação das atuais.

Por fim, o funcionamento será testado na

cloud AWS e o desenvolvimento de testes e

ferramentas de análise para ser possível

inspecionar os funcionamento e erros que

ocorram com o projeto em funcionamento

na cloud, e como última etapa o projeto será

posto em produção, mas em fase de teste

com tráfego real, mas em componentes que

não sejam críticos, estas três partes serão as

tarefas 8, 9 e 10.

V. Desenvolvimento

 Neste capítulo são apresentadas as

decisões que foram tomadas inicialmente,

nomeadamente a estrutura inicial e a

utilização da aplicação NATS. Também é

apresentado os motivos que levaram a

desconsiderar a aplicação NATS, assim

como a alternativa que foi implementada e

por fim as funcionalidades existentes na

aplicação.

Portanto seguindo o sistema anterior, existe

somente um servidor onde todos os clientes

estão conectados. Caso este servidor falhe,

os clientes ficam sem forma de utilizar o

serviço. De forma a evitar que isso

aconteça, é necessário adicionar mais

servidores, assim caso um falhe existem

outros que podem receber as conexões. A

isto nomeamos de ser horizontalmente

escalável, caso um servidor falhe ou não

seja capaz de aguentar o número de clientes

atual, existem outros servidores para

receber estes clientes.

No entanto, quando falamos num sistema

PubSub é necessário que quando um evento

é publicado num tópico, este tem de ser

transmitido para todos os clientes subscritos

neste mesmo tópico, independentemente a

qual servidor estes estão conectados. De

forma a resolvermos este problema, tinha

sido inicialmente planeado a utilização da

aplicação NATS, para realizar a

intercomunicação entre os servidores, desta

forma, sempre que um evento é publicado

pelo cliente, é transmitido pelo NATS para

todos os servidores interessados no tópico.

Com esta solução, foi observado um

problema com a utilização do NATS, sendo

este a ineficiência introduzida na passagem

de um evento, principalmente quando é

89

aumentado o número de servidores em

funcionamento.

Na figura 31, existem 3 servidores e 3

instâncias da aplicação NATS. Existe um

número mais elevado de servidores de

forma a ter redundância em caso de falhas e

de forma a ser capaz de receber um maior

número de conexões. Nesta figura temos o

Cliente 1 que publica um evento que tem de

chegar aos Servidores 2 e 3, para isso, assim

que o Servidor 1 receba o evento publicado

pelo Cliente 1, este tem de enviar o evento

para o NATS 1, que por sua vez envia para

o NATS 2 e 3 que por fim enviam aos

Servidores 2 e 3. Portanto, foi necessário

que o evento fosse passado 5 vezes por

rede, relembrando que cada passagem exige

a codificação da mensagem por quem envia

e descodificação por quem recebe.

Figura 31 - Exemplificação da ineficiência da

intercomunicação com a aplicação NATS

De forma a evitar esta ineficiência,

podemos ter os servidores a comunicar

entre si em vez de utilizar a aplicação NATS

como intermediário. Para isso, é necessário

implementar algo que seja capaz de

substituir a utilização da aplicação NATS,

ou seja, é necessário resolver os 3 seguintes

pontos:

• Consenso;

• Intercomunicação;

• Distribuição.

O consenso consiste em ter conhecimento

de quais servidores estão ativos. A

utilização da aplicação NATS evitava esta

necessidade, afinal os eventos eram

publicados no NATS e este iria distribuir o

evento por quem está interessado. A

intercomunicação consiste no envio de

informações e eventos entre os servidores.

A distribuição consiste em como os tópicos

ou channels são distribuídos pelos

servidores.

A. Consenso

O consenso é um dos problemas

fundamentais em sistemas distribuídos, este

exige que múltiplos membros concordem

em um conjunto de valores mesmo na

presença de falhas. Um protocolo de

consenso que seja capaz de tolerar falhas

deve cumprir as seguintes propriedades:

terminação, sendo que eventualmente todos

membros concordam com um valor;

integridade, caso os membros proponham o

mesmo valor, então outros devem decidir

no mesmo valor; concordância, todos

membros devem concordar no mesmo

valor. Algoritmos de consenso tendem a

confirmar um valor quando a maioria dos

membros do cluster esteja disponível, por

exemplo, um cluster de 5 membros pode

continuar a operar com a falha de dois

membros, no entanto, caso mais que dois

falhem estes deixam de conseguir alterar os

valores e somente retornam os valores

previamente acordados.

Portanto, o consenso em sistemas

distribuídos é um processo em que vários

membros de um sistema distribuído

trabalham em conjunto para tomar uma

90

decisão em comum. Este processo é

necessário quando há́ vários componentes

no sistema e é preciso chegar a um acordo

sobre qual ação deve ser tomada. Por

exemplo, num cluster, é necessário que

todos os membros saibam qual membro é

responsável por determinada tarefa ou quais

dados estão disponíveis em cada membro.

Para alcançar o consenso, os sistemas

distribuídos utilizam algoritmos de

consenso, como o algoritmo Paxos ou o

algoritmo Raft, que são projetados de forma

a garantir que todos os membros no sistema

tenham a mesma visão dos dados e das

ações a serem tomadas. Estes algoritmos

permitem que os membros elejam um líder

ou coordenador que tomará as decisões,

enquanto os outros membros seguirão as

instruções do líder. O consenso em sistemas

distribuídos é fundamental para garantir a

consistência e a integridade dos dados em

todo o sistema. Neste são considerados os

protocolos Raft e Gossip como protocolos

de consenso.

B. Raft

Raft é um algoritmo de consenso com

propósito de ser simples de compreender,

este é equivalente ao algoritmo Paxos a

nível de tolerância de falhas e desempenho.

Este atinge o consenso através de um e

somente um líder eleito. Neste protocolo,

cada membro tem o cargo de líder ou

seguidor e pode ser um candidato caso um

líder não exista. O membro com o cargo de

líder tem a responsabilidade de replicar logs

para os seguidores, adicionalmente, este

regularmente informa os seus seguidores da

sua existência através do envio de um

heartbeat. Cada seguidor tem um ciclo de

intervalos de tempo em qual espera receber

um heartbeat do líder que é reiniciado

sempre que o receba, no entanto, caso o

intervalo de tempo termine sem o receber,

então, o seguidor muda o seu cargo para

candidato e começa uma eleição para um

novo líder. Portanto, o protocolo Raft está

dividido fundamentalmente em duas partes:

eleição de líder e replicação de logs.

Quando o algoritmo inicializa ou um líder

falha, um novo líder tem de ser eleito. Neste

caso, é iniciado um novo termo no cluster.

Um termo é um período arbitrário no

cluster para o qual um novo líder precisa ser

eleito, cada termo começa com a eleição de

um novo líder. A eleição de um líder é

iniciada por um membro candidato, este

aumenta o contador de termo, vota em si

mesmo como novo líder e envia uma

mensagem para todos os outros membros a

pedir o seu voto. Cada membro só́ pode

votar uma vez por cada termo, e estes votam

a favor do primeiro pedido de voto que

receberam. Caso um candidato receba uma

mensagem de outro membro com um

contador de termo superior então este é

automaticamente desqualificado e muda o

seu cargo de volta para seguidor. Caso um

membro receba a maioria de votos então

este torna-se o novo líder, caso exista um

empate de votos então um novo termo é

começado e o processo é repetido,

adicionalmente, de forma a evitar ciclos de

empate de votos, cada membro escolhe um

intervalo de tempo aleatório, com valores

reduzidos, antes de voltar a tentar a nova

eleição. Quanto à segunda parte, a

replicação de logs, esta é a responsabilidade

do líder, este recebe pedidos de clientes,

sendo que cada pedido consiste num

comando a ser executado e replicado por

todos membros do cluster. Após o comando

seja adicionado à lista de logs do líder, este

envia este comando para todos os

seguidores. Caso os seguidores não estejam

disponíveis, o líder volta a tentar enviar o

comando por vezes indefinidas até que o

log seja eventualmente adicionado à lista

dos seguidores. Assim que o líder recebe a

confirmação, de metade ou mais dos seus

seguidores, que o comando foi replicado,

este aplica o comando ao seu estado local e

o pedido é considerado como aplicado. Este

protocolo é utilizado quando é necessário

que exista uma forte consistência de

informações no cluster, sendo permitido

apenas ao líder realizar alterações, um

exemplo comum de utilização deste

protocolo pode ser encontrado nas bases de

91

dados CockroachDB, MongoDB, Neo4j,

TiDB e YugabyteDB. Sendo que somente

um membro do cluster é capaz de realizar

alterações, a capacidade do cluster é

limitada pela capacidade do líder. De forma

a resolver este problema, é utilizado o

Multi-Raft, este utiliza múltiplos grupos

tendo cada um o seu líder e gerindo uma

secção da informação. No caso de uma base

de dados, podemos ter um grupo por cada

tabela e aplicar alterações a grupos

separados aumentando a quantidade de

alterações possíveis e distribuindo a carga

entre mais membros. Adicionalmente, caso

somente seja necessário a consulta de

informações, esta pode ser realizada a

qualquer seguidor, com o risco de receber

informação desatualizada ou então realizar

a consulta ao líder para ter a garantia de ter

a última informação.

C. Gossip

O protocolo gossip ou protocolo epidémico

consiste em um procedimento de

comunicação peer-to-peer que assimila a

forma como as epidemias ou rumores se

espalham, neste protocolo cada membro de

grupo periodicamente troca informação

com outros membros sobre o seu próprio

estado e sobre o estado de outros membros.

Este protocolo permite que um sistema

distribuído tenha a garantia que a

informação é eventualmente distribuída por

todos os membros do grupo sem precisar de

um sistema centralizado a coordenar esse

aspeto. Visto não precisar de um sistema

centralizado este protocolo é dos mais

robustos e escaláveis para consistência

eventual dos membros do cluster, deteção

de falhas e permite o envio de informações

adicionais durante as trocas de informação.

Figura 32 - Exemplo de cluster a utilizar o protocolo

gossip

Na figura 32 podemos ver um exemplo de

um cluster com 5 membros, neste exemplo

cada membro comunica somente com

outros 2 membros. De forma a propagar

uma informação entre todos os membros

seriam necessários 3 ciclos, sendo cada

ciclo uma troca de informação entre os

membros após cada intervalo de tempo

definido no cluster. Uma exemplificação da

propagação com origem no Node 1 pode ser

observada na figura 33.

Figura 33 - Exemplo de propagação

 No caso de um cluster com 40 membros e

cada membro comunique somente com

outros 4 membros seriam necessários

somente 4 ciclos. O artigo "Epidemic

92

Algorithms for Replicated Database

Maintenance" [19] descreve algoritmos de

replicação de bases de dados que usam a

propagação de informações entre membros

de um sistema distribuído, este apresenta

uma fórmula para estimar o tempo de

convergência do algoritmo de propagação

de informações com base no número de

membros do sistema e na taxa de

propagação de informações. Essa fórmula é

𝑇 = O(𝑙𝑜𝑔(𝑁) ∕ 𝑝), onde N é o número de

membros do sistema e p é a taxa de

propagação de informações e O(𝑙𝑜𝑔(𝑁)) o

número de ciclos necessários para que a

informação seja propagada por todo o

sistema. Portanto, de forma a calcular

aproximadamente quantos ciclos são

necessários para a propagação de uma

informação, iremos nos focar apenas na

parte O(log(N)), desta forma, iremos

usando o seguinte cálculo 𝐶 = 𝑙𝑜𝑔𝑃(𝑁)

onde c é o número de ciclos. Portanto, com

40 membros e propagação de 4 temos

𝑙𝑜𝑔4(40) = 2.66, ou seja,

aproximadamente 3 ciclos, no caso de um

cluster com 5 membros e propagação de 2

temos 𝑙𝑜𝑔2(5) = 2.32 que também são

aproximadamente 3 ciclos.

Vendo o protocolo de alto nível, num

cluster, cada membro mantém uma lista de

um subconjunto dos membros a que tem

conhecimento, os seus endereços e alguns

dados adicionais (metadata), e

periodicamente, cada membro atualiza na

sua lista de “vizinhos” os contadores de

heartbeat de acordo com os dados emitidos

por outros membros e envia a informação

atualizada para alguns dos membros. Assim

que um membro tenha recebido uma das

mensagens, esta junta a lista na mensagem

com a sua lista e mantém os dados com o

contador de heartbeat mais elevado no caso

de colisões. Assim sendo, enquanto o valor

do contador for subindo para um membro é

garantido que este esteja healthy (ativo e

sem problemas) e é considerado unhealthy

(desativo ou com problemas) caso o

contador de heartbeat não seja aumentado

durante um intervalo de tempo.

Adicionalmente, durante a troca de

informações entre membros é possível

enviar informações extra como por

exemplo, carga média e memória livre para

que outros membros possam utilizar essa

informação para balancear a carga entre

membros. Outra forma de explicar o

protocolo gossip é comparando com a

disseminação de rumores numa

comunidade. Assim como no protocolo

gossip, um rumor começa com uma pessoa

que o compartilha com alguns amigos

próximos. Esses amigos, por sua vez,

compartilham o rumor com outros amigos,

e assim sucessivamente. Conforme o rumor

se espalha, este pode ser confirmado,

negado ou até mesmo modificado por

diferentes pessoas ao longo do caminho. O

resultado é uma ampla disseminação de

informações pela comunidade, com a

possibilidade de chegar a um consenso ou

opinião comum. Da mesma forma, o

protocolo gossip permite a disseminação de

informações em sistemas distribuídos, onde

diferentes membros compartilham e

modificam informações entre si até

chegarem a um consenso ou estado comum.

No caso deste projeto, o protocolo gossip é

baseado em "SWIM: Scalable Weakly-

consistent Infection-style Process Group

Membership Protocol" [20] com algumas

modificações. A implementação foi criada

pela empresa Hashicorp e foi nomeada de

Serf. Explicando de forma breve e

incompleta, um membro começa por se

juntar a cluster já́ existente ou cria um novo,

caso esteja-se a juntar, é realizada uma

sincronização completa com um membro já

existente do cluster utilizado o protocolo

TCP e depois começa a realizar trocas de

informação assim como referido

previamente. Neste caso, a comunicação

utilizada para troca de informações utiliza o

protocolo UDP com o número de

propagação de intervalo configurável.

Nesta implementação é apenas enviadas

alterações de informação com o protocolo

UDP. Mesmo após um membro se juntar ao

grupo algumas sincronizações completas

ocorrem com outro membro aleatório

93

utilizando o protocolo TCP, no entanto,

estas ocorrem com menor frequência, o

intervalo destas transmissões também pode

ser configurado ou desativado. De forma a

detetar uma falha, um pedido de verificação

é enviado aleatoriamente num intervalo de

tempo configurável, caso o destinatário

falhe a responder dentro de um prazo de

tempo razoável então um pedido de

verificação é enviado indiretamente. Um

pedido de verificação indireto passa por

pedir a um número configurável de

membros para realizarem um pedido de

verificação ao membro, isto permite

perceber se um membro não está acessível

por problemas que estejam a ocorrer na

rede. Caso ambas tentativas falhem, então o

membro é marcado como suspeito e estas

informações são enviadas para todo cluster

utilizado o mesmo mecanismo de

propagação. Por fim, caso o membro

suspeito não responda à suspeita num

intervalo de tempo configurável então o

membro é considerado como morto, e

novamente esta informação é propagada

pelo cluster. Outra funcionalidade desta

implementação passa por permitir o envio

de eventos e consultas utilizando o

mecanismo de propagação, algo que pode

ser utilizado, por exemplo, quando a

configuração do cluster muda e é

necessário que esta alteração seja

propagada por todos os membros.

D. Escolha de protocolo de consenso

Tendo revisto as opções gossip e Raft, a

opção escolhida para ser utilizada neste

projeto passa pelo gossip. Tendo como

objetivo que todos membros concordem

com quais membros estão ativos, o

algoritmo Raft oferece mais

funcionalidades do que as necessárias e

mais restrições do que a opção gossip,

adicionalmente, não sendo necessário

armazenar informação ou sendo exigido

uma forte consistência de informação é

preferível a utilização do protocolo gossip

sendo este mais eficiente no consumo de

recursos de processamento e de rede e

permite uma quantidade mais elevada de

membros sendo que o algoritmo Raft tem o

seu melhor desempenho num cluster com 3

a 9 membros enquanto em gossip um

número muito mais elevado é possível, por

exemplo, em gossip um cluster com 100

membros e propagação de 4 leva

aproximadamente 3 ciclos a propagar a

informação.

A utilização de ambos protocolos em

simultâneo também é possível, utilizando o

protocolo gossip de forma a manter uma

lista de membros ativos, e utilizar o

algoritmo Raft apenas para gerir a

consistência de informação, no entanto,

como previamente mencionado, a

utilização do Raft limite consideravelmente

o número de membros a serem utilizados

num cluster.

Utilizando o gossip, é possível manter uma

consistência eventual dos membros

presentes no cluster, e esta informação é

somente utilizada de forma a realizar

intercomunicação entre os membros do

cluster. Não tendo o protocolo gossip como

objetivo de enviar informação de forma

rápida, será́ antes utilizada a informação

que este gere para utilizar outro método de

envio de informação para o resto dos dados

aplicacionais, adicionalmente, também é

necessário organizar os membros de forma

a evitar e reduzir o número de vezes que

uma mensagem tem de ser transmitida.

E. Intercomunicação

De forma a realizar a intercomunicação

entre membros existem várias

possibilidades, no entanto, as mais

utilizadas são Apache Thrift, gRPC ou

então usar diretamente uma conexão TCP e

gerir diretamente o envio de dados. De

forma a simplificar e reutilizar

conhecimento já existente na empresa, o

método de comunicação escolhido é o

gRPC.

94

O gRPC é um framework de comunicação

remota de alta performance, este permite

que aplicativos clientes e servidores

troquem dados entre si de maneira rápida,

confiável e eficiente, utilizando protocolos

de comunicação padronizados e uma

interface de programação simples e fácil de

utilizar. O gRPC é baseado no protocolo

HTTP/2, o que significa que este suporta

funcionalidades avançadas, como

streaming bidirecional e unidirecional,

compressão de dados e multiplexação de

pedidos. Este é frequentemente utilizado

em sistemas distribuídos e em arquiteturas

baseadas em microserviços para facilitar a

comunicação entre diferentes componentes

do sistema, outras funcionalidades deste

framework. De forma a serializar os dados

enviados, o gRPC utiliza Protocol Buffers.

O Protocol Buffers é uma tecnologia de

serialização de dados também desenvolvida

pela Google, que permite que estruturas de

dados sejam definidas em um formato de

linguagem neutra e compacta. Estas

estruturas são então compiladas em código

fonte para várias linguagens de

programação, o que permite que as

aplicações cliente e servidor possam

facilmente trocar dados estruturados entre

si.

F. Distribuição

Tendo uma forma de saber quais membros

estão presentes no cluster e forma de

comunicação entre cada membro, é

necessário estabelecer a forma como estes

serão organizados. De forma a aumentar e

evitar problemas de desempenho, o cluster

não terá́ nenhum membro central que terá́

toda a responsabilidade ou que irá atribuir

responsabilidades, em vez disso, cada

membro vai ser responsável por um

conjunto da carga a ser processada, e a

designação de qual membro tem qual

responsabilidade vai ser definida através do

hash ring. Sendo um channel a parte onde

irá ocorrer quase todo o processamento da

aplicação, o nome deste em conjunto o

nome do hub vão ser utilizados como chave

para distribuição.

G. Hash Ring

Portanto, de forma a evitar este problema,

temos a técnica de anel de hash, ou hash

ring, esta técnica forma um anel virtual

(figura 34), em que cada membro é

responsável por um intervalo contínuo de

valores no anel.

Figura 34 - Membros do cluster representados num

anel virtual

Figura 35 - Anel virtual com membros de um cluster

e channels

95

Figura 36 - Anel virtual com membros de um cluster

e channels com a falha de um membro

Exemplificando os cenários anteriores

podemos ver na figura 35 como a

distribuição dos channels é representada no

hash ring. Portanto, tendo em conta o

mesmo exemplo, podemos ver na figura 36

o resultado do mesmo cenário de falha do

membro "Node 1". Como pode ser visto,

somente um channel precisa de ser

rebalanceado, além de serem precisos

menos rebalanceamentos, também

podemos somente recalcular os channels a

que pertenciam aquele membro, tornando

esta técnica ainda mais eficiente.

Imaginando a situação em que um novo

membro se junta ao cluster com o nome

"Node 4" e a sua posição no anel é

calculada entre o "Node 3" e "Node 2"

podemos buscar todos channels a que o

"Node 2" é responsável e recalcular o seu

responsável, mais uma vez evitando

recalcular todos os channels. Usando esta

mesma técnica, temos a possibilidade de

saber quem poderá́ ser o próximo

responsável de um certo channel, algo que

pode ser utilizado de forma criar um

sistema de redundância.

H. Novo Sistema

Tendo agora as partes fundamentais do

sistema, com o consenso a ser resolvido

com o protocolo gossip, a

intercomunicação com o framework gRPC

e a distribuição utilizando a junção do

gossip e hash ring, é importante perceber

como estes irão funcionar em conjunto.

Em primeiro lugar, temos a parte

responsável por chegar ao consenso de

quantos membros existem no cluster, esta

parte assim como previamente referida é

gerida pelo protocolo gossip. Portanto,

sempre que um novo membro se junta ou

sai do cluster, este irá refletir no hash ring.

Lembrando, que no hash ring vão ser

mapeados todos os identificadores dos

membros do cluster. Assim sendo, quando

precisamos de distribuir um channel ou

localizá-lo, será́ calculada a localização do

channel no hash ring utilizando o

identificador deste. Sabendo a posição no

hash ring, podemos facilmente calcular a

qual membro o channel pertence. Portanto,

quando um membro sai ou se junta, a sua

posição será́ adicionada ou removida do

hash ring e potencialmente será necessário

recalcular a quais membros os channels

pertencem.

O ponto de intercomunicação, neste sistema

é introduzido quando é necessário enviar

informação entre membros, por exemplo,

publicar um evento num channel, exige que

um pedido seja feito ao membro

responsável por este, ou seja, uma conexão

será́ criada ou reutilizada ao membro

destino onde será́ enviado o pedido para

publicar o evento. Assim como

mencionado, esta intercomunicação será́

realizada com o framework gRPC, de forma

a saber os endereços para qual a conexão

será́ criada, será́ utilizado o protocolo

gossip para descobrir esses endereços.

Portanto, o protocolo gossip é o elemento

principal destes três pontos, este em junção

com os outros dois pontos permite ter bases

para a criação de um sistema distribuído.

Existe ainda um ponto.

I. Inicializar

Para iniciar um cluster é necessário a

existência de mais que uma instância da

aplicação. A uma destas instâncias é

indicado os endereços de rede da outra, para

que uma conexão seja estabelecida. Assim

que estabelecida, ambas instâncias formam

96

um cluster de acordo com o protocolo

gossip, e novas instâncias têm de se juntar

ao cluster utilizando o mesmo processo.

Para este processo, é necessário o

conhecimento dos endereços de rede das

novas instâncias da aplicação, algo que

costuma ser gerido por um service

discovery, ou descoberta de serviços. Este é

um serviço utilizado em arquiteturas de

sistemas distribuídos para encontrar e se

conectar a serviços disponíveis numa rede,

este tem um endereço de rede conhecido

por todas aplicações que o usam para

registarem a sua presença e publicarem

informações sobre si, tornando mais fácil

para outros serviços localizá-los e se

comunicarem com eles. Isto permite que os

sistemas distribuídos sejam mais flexíveis,

escaláveis e resilientes, uma vez que os

serviços podem ser facilmente adicionados

ou removidos sem afetar a operação geral

do sistema.

Na empresa não existe um service

discovery, visto que o NATS serve como um

serviço central que permite a comunicação

entre serviços, evitando assim a

necessidade de um service discovery.

Portanto, para esta aplicação um service

discovery seria útil, mas visto a inexistência

de um, foram utilizados meios mais simples

de forma a descobrir outras instâncias desta

aplicação.

O serviço AWS ECS, é onde a aplicação vai

ser executada, utilizando Docker

containers. Este serviço oferece uma API,

que permite que sejam consultadas

informações sobre as instâncias em

execução. Portanto, quando uma nova

instância é criada, esta utiliza esta API, para

consultar todas as placas de rede do mesmo

tipo da aplicação, retornando assim os

endereços de rede a que estas é atribuído,

com estes endereços a aplicação realiza um

pedido para se juntar ao cluster, que será

aceite caso as credenciais da nova instância

estejam corretas. Para ambientes locais de

desenvolvimento, é utilizado o UDP

Broadcast. Sendo isto uma técnica de

comunicação em rede que envia mensagens

de um emissor para vários dispositivos, sem

que o emissor precise saber exatamente

quem são esses dispositivos ou onde estes

estão localizados na rede. Nesse método, o

emissor envia uma mensagem de difusão

(Broadcast) para um endereço IP especial,

que é reconhecido por todos os dispositivos

conectados na rede. Assim, todos os

dispositivos conectados na rede que estão à

escuta nesse endereço IP especial, podem

receber a mensagem enviada pelo emissor.

Quando os outros membros recebem a

mensagem enviada, estes podem anunciar

sua presença na rede e permitir que outros

membros os descubram de maneira fácil e

rápida.

IV. Resultados

Assim como previamente mencionado,

antes de expor o novo sistema às aplicações

móveis, foi feito um teste de quantas

conexões um cluster com 3 membros seria

capaz de suportar, em servidores com

somente 0.25 vCPU e 0.5 GB de RAM.

Neste teste, cada membro do cluster foi

capaz de suportar aproximadamente 15 mil

conexões num total de aproximadamente 45

mil conexões, não sendo capaz de ter mais

conexões devido ao limite de RAM nos

servidores. Utilizando servidores com

maior capacidade o cluster é capaz de

aumentar a quantidade de conexões com o

mesmo número de membros, no entanto, o

objetivo era ver a capacidade de

distribuição e tolerância a falhas. Estes

valores obtidos são muito superiores aos

9000 atualmente esperados, além de ser

capaz de suportar falha dos membros sem

indisponibilizar o serviço.

Após o teste de conexões foi realizado outro

teste com o objetivo de avaliar o tempo que

um cluster demora a ajustar os channels

pelos membros. Neste teste existem 3

membros no cluster e um quarto é

adicionado normalmente e removido

repentinamente de forma a simular uma

falha. Após cada ajuste é coletado a partir

dos logs de cada membro o tempo que o

ajuste demorou em milissegundos, para

clarificar, só é apontado a duração do ajuste

97

e não de deteção que o membro foi

adicionado ou removido.

Para este teste, foram escolhidas 4

variações com 5 rondas cada, nestas variam

o número de channels e o número de

clientes, no entanto estes não ultrapassam

dos 3. As 4 variações são as seguintes:

1ª Variação:

 1 cliente conectado ao Node 1;

 500 channels;

 Identificador de channels em

UUIDs (Universal Unique

IDentifiers).

2ª Variação:

 3 clientes, um conectado a cada

Node.

 1500 channels;

 Identificador de channels em

conjunto de 20 caracteres aleatórios.

3ª Variação:

 3 clientes, um conectado a cada

Node.

 4500 channels;

 Identificador de channels em

conjunto de 40 caracteres aleatórios.

4ª Variação:

 50 clientes distribuídos pelos

Nodes.

 100000 channels;

 Identificador de channels em

conjunto de 40 caracteres aleatórios.

A diferença nos identificadores do channels

deve-se ao posicionamento no hash ring. Na

primeira variação grande parte dos

identificadores channels eram semelhantes,

o que levava que estes tivessem o mesmo

Node como responsável. Com os

identificadores gerados aleatoriamente

houve uma melhor distribuição pelos

Nodes, assim como pode ser observado nos

resultados representados na figura 37 e

figura 38.

Figura 37 - Tempo médio de redistribuição no

cluster em milissegundos (Adicionar)

Figura 38 - Tempo médio de redistribuição no

cluster em milissegundos (Remover)

A diferença entre de desempenho entre o

adicionar ou remover um membro do

cluster deve-se ao processo de remover um

membro do cluster ser mais eficiente. Neste

processo sabemos o identificador do Node

que saiu o que permite que seja calculado

de forma eficiente quais channels devem

ser movidos, adicionalmente, numa

redistribuição ao adicionar um membro é

necessário notificar o membro do cluster

previamente responsável de que não tem

mais interesse nos channels a que estes

pertenciam, este passo não acontece quando

um membro é removido. O tempo de ajuste

destas variações vai subindo de acordo com

o número de channels ativos no cluster,

sendo que quando observamos o salto da

segunda para a terceira variação do teste o

tempo de ajuste sobe consideravelmente,

inclusive não foi possível realizar a quarta

0

5000

10000

15000

1ª
Variação

2ª
Variação

3ª
Variação

4ª
Variação

Tempo médio de redistribuição

no cluster em milissegundos

(Adicionar)

Node 1 Node 2 Node 3

0

50000

100000

150000

1ª

Variação

2ª

Variação

3ª

Variação

4ª

Variação

Tempo médio de redistribuição

no cluster em milissegundos

(Remover)

Node 1 Node 2 Node 3

98

variação do teste devido ao tempo que o

cluster fica em ajustes. Após analisar os o

que leva a este considerável aumento, foi

identificado que o atraso se deve à forma

como a movimentação dos channels e das

conexões gRPC para os novos responsáveis

é realizada. Este processo é feito de forma

individual, ou seja, um channel de cada vez.

Este processo foi melhorado drasticamente,

agrupando todos as alterações a serem

realizadas por membro num conjunto e

enviar somente uma mensagem por cada

conjunto de operações, adicionalmente,

este processo foi também paralelizado. Esta

alteração resultou nos resultados

apresentados da quarta variação.

Quanto ao tempo que leva a adicionar ou

remover um Node ao cluster é de

aproximadamente 16ms, para a deteção de

falha do tempo é entre 120 a 500ms. De

forma a obter os 16ms, foi registado o

tempo em que o Node descobre os

endereços dos outros membros e o tempo

em que este se juntou a pelo menos um dos

membros do cluster. Para o tempo de

deteção de falha foi comparado o tempo em

que o Node foi terminado com o tempo que

um dos Nodes detetou a falha, os intervalos

entres estes dois tempos foram muito

variados sendo os valores mais comuns

entre 120 a 500ms.

Quanto às fases de teste com tráfego real,

não foi possível obter todos os resultados

antes da produção deste documento. Visto

que o projeto ainda se encontra na segunda

fase de testes, as análises de resultados são

bastante limitadas.

Nas primeiras duas fases de testes com

tráfego real, foi observado que o número de

sessões em simultâneo era

consideravelmente inferior ao esperado, no

entanto, é possível verificar que o número

de sessões é distribuído ao longo do dia,

com picos relativamente pequenos.

Na figura 39 podemos observar a

distribuição de sessões ao longo do dia, esta

visualização acumula as sessões dos tenants

em fase de teste.

Figura 39 - Distribuição de sessões por hora

Na figura 40, temos a representação da

duração média de sessão a cada hora do dia.

Assim como pode ser observado as

durações das sessões são relativamente

baixas, sendo assim com o apresentado as

16 horas na mesma figura.

Figura 40 - Média de duração de sessão por hora

Até ao momento de que este documento foi

desenvolvido, já foram em enviadas 12 706

780 mensagens e recebidas 12 706 690

mensagens, com um total de 173 977

sessões estabelecidas com 2802 sessões

diárias em média, e com soma de duração

destas de 23 757 458 segundos ou

aproximadamente 6600 horas e duração

média de 2 minutos.

V. Conclusão

Em conclusão, o novo sistema distribuído

apresenta uma solução satisfatória para os

problemas encontrados no sistema antigo,

com melhorias significativas na

escalabilidade, na tolerância a falhas e na

monitorização. Adicionalmente, todas as

funcionalidades do antigo sistema foram

0

5000

10000

15000

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0

:0
0

1
2

:0
0

1
4

:0
0

1
6

:0
0

1
8

:0
0

2
0

:0
0

2
2

:0
0

Sessões por hora

Sessões por hora

0

500

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0

:0
0

1
2

:0
0

1
4

:0
0

1
6

:0
0

1
8

:0
0

2
0

:0
0

2
2

:0
0

Média de duração de sessão

por hora em segundos

Média de duração de sessão por hora em

segundos

99

mantidas enquanto novas foram

adicionadas, permitindo também adicionar

futuras funcionalidades graças à sua

arquitetura. Embora algumas

funcionalidades, como Streams e push

notifications, ainda não estejam completas,

foram identificadas oportunidades para

melhorias futuras.

O novo sistema atingiu todos os objetivos

estabelecidos, incluindo escalabilidade

horizontal, comunicação bidirecional entre

cliente e servidor, comunicação utilizando

Pub/Sub em tópicos, restrição de acesso a

tópicos, suporte para múltiplos tenants,

criação explícita de tópicos, rastreamento

de presença de clientes em cada tópico e

armazenamento de mensagens enviadas em

cada tópico.

Os próximos passos para o sistema são

planear o escalamento global e o routing

inteligente, tendo em conta a latência entre

o servidor e o cliente, garantindo que o

sistema possa lidar comum número maior

de utilizadores e volume maior de dados.

VI. VI. Referências

[1] Fette, I., & Melnikov, A. (2011). The

WebSocket Protocol. RFC.

https://doi.org/10.17487/rfc6455https://

datatracker.ietf.org/doc/html/rfc6455

[2] Roome, W., & Yang, Y. R. (2020,

novembro 1). Application-Layer Traffic

Optimization (ALTO) Incremental

Updates Using Server-Sent Events

(SSE). IETF. https://www.rfc-

editor.org/rfc/rfc8895.html

[3] Thomson, M., & Damaggio, E. (2016,

dezembro 1). Generic Event Delivery

Using HTTP Push. https://www.rfc-

editor.org/rfc/rfc8030

[4] Centrifugo. (s.d.). Scalable real-time

messaging server in a language-

agnostic way. Recuperado a 13 de

janeiro de 2023, de

https://centrifugal.dev/

[5] Mercure. (s.d.). Recuperado a 13 de

janeiro de 2023, de

https://mercure.rocks/

[6] Phoenix Framework. (s.d.). Recuperado

a 13 de janeiro de 2023, de

https://www.phoenixframework.org/

[7] Octavo Labs AG. (s.d.). A MQTT

broker that is scalable, enterprise

ready, and open source. VerneMQ.

Recuperado a 13 de janeiro de 2023, de

https://vernemq.com/

[8] HiveMQ (s.d.). Enterprise ready MQTT

to move your IoT data. HiveMQ.

Recuperado a 13 de janeiro de 2023, de

https://www.hivemq.com/

[9] Emitter (s.d.) Scalable Real-Time

Communication Across Devices.

Emitter.io. Recuperado a 13 de janeiro

de 2023, de https://emitter.io/

[10] EMQ Technologies Inc. (s.d.). EMQ X -

MQTT Messaging Broker for IoT.

EMQ. Recuperado a 13 de janeiro de

2023, de https://www.emqx.io/.

[11] SocketCluster. (s.d.) SocketCluster -

Highly scalable pub/sub and RPC

toolkit optimized for async/await.

Socketcluster.io. Recuperado em 13 de

janeiro de 2023, de

https://socketcluster.io/

[12] Soketi. (s.d.). Recuperado a 13 de

janeiro de 2023, de https://soketi.app/

[13] Microsoft. (s.d.). Real-time ASP.NET

with SignalR | .NET. Recuperado em 20

de junho de 2023, de

https://dotnet.microsoft.com/apps/aspne

t/signalr

[14] Ably. (s.d.). The platform to power

synchronized digital experiences in

realtime. Ably Realtime. Recuperado a

13 de janeiro de 2023, de

https://ably.com/

[15] PubNub Inc. (2022, julho 14). Real-time

in-app chat and Communication

Platform. PubNub. Recuperado a 13 de

janeiro de 2023, de

https://www.pubnub.com/

[16] Pusher Ltd. (s.d.). Powering realtime

experiences for mobile and web, Leader

in Realtime Technologies. Pusher

Recuperado a 13 de janeiro de 2023, de

https://pusher.com/

[17] Fanout. (s.d.). Fanout | Powering

Streaming APIs. Fanout Recuperado a

100

13 de janeiro de 2023, de

https://fanout.io/

[18] The Go Programming Language. (s.d.).

Golang.org. Recuperado a 13 de janeiro

de 2023, de https://golang.org/

[19] Demers, A., Greene, D., Hauser, C.,

Irish, W., Larson, J., Shenker, S.,

Sturgis, H., Swinehart, D., & Terry, D.

(1987). Epidemic algorithms for

replicated database maintenance. In

Proceedings of the 6th Annual ACM

Symposium on Principles of Distributed

Computing (PODC '87) (pp. 1-12).

Association for Computing Machinery.

https://doi.org/10.1145/41840.41841

[20] Das, I., Gupta, I., & Motivala, A.

(2002). SWIM: scalable weakly-

consistent infection-style process group

membership protocol. In Proceedings

International Conference on Dependable

Systems and Networks (pp. 303-312).

Washington, DC, USA. doi:

10.1109/DSN.2002.1028914.

101

BIBLIOGRAFIA

Redis Labs. (s.d.). Redis. Recuperado a 13 de janeiro de 2023 de https://redis.io/

Fette, I., & Melnikov, A. (2011). The WebSocket Protocol. RFC.

https://doi.org/10.17487/rfc6455

Roome, W., & Yang, Y. R. (2020, novembro 1). Application-Layer Traffic Optimization

(ALTO) Incremental Updates Using Server-Sent Events (SSE). IETF. https://www.rfc-

editor.org/rfc/rfc8895.html

Thomson, M., & Damaggio, E. (2016, dezembro 1). Generic Event Delivery Using HTTP

Push. https://www.rfc-editor.org/rfc/rfc8030

Centrifugo. (s.d.). Scalable real-time messaging server in a language-agnostic way.

Recuperado a 13 de janeiro de 2023, de https://centrifugal.dev/

Mercure. (s.d.). Recuperado a 13 de janeiro de 2023, de https://mercure.rocks/

Phoenix Framework. (s.d.). Recuperado a 13 de janeiro de 2023, de

https://www.phoenixframework.org/

Octavo Labs AG. (s.d.). A MQTT broker that is scalable, enterprise ready, and open source.

VerneMQ. Recuperado a 13 de janeiro de 2023, de https://vernemq.com/

HiveMQ (s.d.) Enterprise ready MQTT to move your IoT data. HiveMQ. Recuperado a 13 de

janeiro de 2023, de https://www.hivemq.com/

Emitter (s.d.) Scalable Real-Time Communication Across Devices. Emitter.io. Recuperado a

13 de janeiro de 2023, de https://emitter.io/

EMQ Technologies Inc. (s.d.). EMQ X - MQTT Messaging Broker for IoT. EMQ.

Recuperado a 13 de janeiro de 2023, de https://www.emqx.io/.

SocketCluster. (s.d.) SocketCluster - Highly scalable pub/sub and RPC toolkit optimized for

async/await. Socketcluster.io. Recuperado em 13 de janeiro de 2023, de

https://socketcluster.io/

Soketi. (s.d.). Recuperado a 13 de janeiro de 2023, de https://soketi.app/

Microsoft. (s.d.). Real-time ASP.NET with SignalR | .NET. Recuperado em 20 de junho de

2023, de https://dotnet.microsoft.com/apps/aspnet/signalr

Ably. (s.d.). The platform to power synchronized digital experiences in realtime. Ably

Realtime. Recuperado a 13 de janeiro de 2023, de https://ably.com/

PubNub Inc. (2022, julho 14). Real-time in-app chat and Communication Platform. PubNub.

Recuperado a 13 de janeiro de 2023, de https://www.pubnub.com/

102

Pusher Ltd. (s.d.). Powering realtime experiences for mobile and web. Leader in Realtime

Technologies. Pusher. Recuperado a 13 de janeiro de 2023, de https://pusher.com/

Fanout. (s.d.). Fanout | Powering Streaming APIs. Fanout Recuperado a 13 de janeiro de

2023, de https://fanout.io/

The Go Programming Language. (s.d.). Golang.org. Recuperado a 13 de janeiro de 2023, de

https://golang.org/

NATS.io. (s.d.). Recuperado a 13 de janeiro de 2023, de https://nats.io/

Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart,

D., & Terry, D. (1987). Epidemic algorithms for replicated database maintenance. In

Proceedings of the 6th Annual ACM Symposium on Principles of Distributed

Computing (PODC '87) (pp. 1-12). Association for Computing Machinery.

https://doi.org/10.1145/41840.41841

Das, I., Gupta, I., & Motivala, A. (2002). SWIM: scalable weakly-consistent infection-style

process group membership protocol. In Proceedings International Conference on

Dependable Systems and Networks (pp. 303-312). Washington, DC, USA. doi:

10.1109/DSN.2002.1028914.

Google Developers. (2019). Protocol Buffers. Recuperado a 13 de janeiro de 2023, de

https://developers.google.com/protocol-buffers

Bryan, P. C., & Nottingham, M. (2013, abril 1). JavaScript Object Notation (JSON) Patch.

IETF. https://datatracker.ietf.org/doc/html/rfc6902

103

APÊNDICE A

gRPC

O gRPC é um framework de comunicação remota de alta performance desenvolvido pela

Google. Este permite que aplicativos clientes e servidores troquem dados entre si de maneira

rápida, confiável e eficiente, utilizando protocolos de comunicação padronizados e uma

interface de programação simples e fácil de utilizar. O gRPC é baseado no protocolo HTTP/2,

o que significa que este suporta funcionalidades avançadas, como streaming bidirecional e

unidirecional, compressão de dados e multiplexação de chamadas. Este é frequentemente

utilizado em sistemas distribuídos e em arquiteturas baseadas em microserviços para facilitar

a comunicação entre diferentes componentes do sistema. Utilizando as ferramentas existentes

no framework é possível gerar implementações de servidor e cliente para várias linguagens de

programação, reduzindo o tempo de desenvolvimento e facilitando a manutenção dos

servidores e clientes.

APÊNDICE B

AWS ECS

O Amazon Elastic Container Service (ECS) consiste num serviço de gestão de containers

fornecido pela Amazon Web Services (AWS) que permite aos utilizadores executar e

dimensionar aplicativos em containers. O ECS é integrado com outros serviços da AWS, como

o Amazon Elastic Compute Cloud (EC2) e o Amazon Elastic Load Balancing (ELB), para

permitir a gestão de containers em grande escala e distribuir o tráfego entre estes. Portanto, as

principais funcionalidades deste serviço são:

 Gestão de Docker containers;

 Monitorização de containers;

 Integração com outras serviços AWS;

 Escalamento automático;

 Distribuição de carga;

 Flexibilidade de implementação;

 Inclui a mesma segurança que a AWS oferece nos seus serviços como AWS

Identity, Access Management (IAM) e Amazon Virtual Private Cloud (VPC).

104

APÊNDICE C

AWS Cloudwatch

O Amazon CloudWatch é um serviço de monitorização e análise de logs fornecido pela

Amazon Web Services (AWS) que permite monitorizar recursos e aplicações em tempo real.

Com o CloudWatch, os utilizadores podem coletar e rastrear métricas, coletar e monitorar logs,

definir alarmes e automatizar ações com base em eventos. Este serviço é amplamente utilizado

de forma a monitorar a saúde de aplicativos, identificar e resolver problemas de desempenho e

otimizar o uso de recursos na AWS.

APÊNDICE D

AWS X-Ray

O AWS X-Ray é um serviço de rastreamento de transações fornecido pela Amazon Web

Services (AWS) que permite aos utilizadores analisar e depurar aplicativos distribuídos.

Utilizando o X-Ray, os utilizadores podem rastrear o fluxo de solicitações através de seus

aplicativos e identificar pontos de baixo desempenho ou falhas de desempenho em sistemas

complexos. Este serviço fornece uma visão abrangente do desempenho dos aplicativos,

permitindo que os utilizadores identifiquem e resolvam problemas de desempenho. De forma

coletar as transações é utilizado o OpenTelemetry. Este é um projeto de código aberto que tem

como objetivo fornecer uma maneira padrão e flexível de instrumentar aplicativos para coletar

dados de telemetria, como rastreamento, métricas e logs.

APÊNDICE E

Typescript

TypeScript é uma linguagem de programação de código aberto desenvolvida pela Microsoft

que adiciona recursos opcionais de tipagem estática ao JavaScript. Este é projetado para ser

um superset do JavaScript, o que significa que todo o código JavaScript é válido em TypeScript

e os seus utilizadores podem gradualmente adicionar recursos de tipagem estática para obter

mais segurança e facilidade de manutenção nos seus projetos.

105

APÊNDICE F

Figura 41- Página inicial do dashboard

Fonte: Própria

106

Figura 42- Página de topografia do dashboard, parte 1

Fonte: Própria

107

Figura 43- Página de topografia do dashboard, parte 2

Fonte: Própria

Figura 44- Página de topografia parte 2 ampliada

Fonte: Própria

108

Figura 45- Página de topografia do dashboard, parte 3

Fonte: Própria

109

Figura 46 - Página de topografia parte 3 ampliada

Fonte: Própria

110

Figura 47- Página de métricas do dashboard, channels ativos

Fonte: Própria

Figura 48- Página de métricas do dashboard, sessões ativas

Fonte: Própria

111

Figura 49- Página de métricas do dashboard, hubs ativos

Fonte: Própria

Figura 50 - Página de métricas do dashboard, mensagens enviadas comparadas com mensagens recebidas

Fonte: Própria

112

Figura 51- Página de métricas do dashboard, bytes enviados comparados com bytes recebidos

Fonte: Própria

Figura 52- Página de métricas do dashboard, sessões por dia

Fonte: Própria

113

Figura 53- Página de métricas do dashboard, média de duração de sessão por dia

Fonte: Própria

Figura 54 - Página de teste de sessão

Fonte: Própria

114

Figura 55 - Página de teste de sessão, detalhes de sessão

Fonte: Própria

Figura 56- Página de teste de sessão, histórico de conexão

Fonte: Própria

115

Figura 57 - Página de teste de sessão, histórico de channel

Fonte: Própria

APÊNDICE G

package protocol;

import "google/protobuf/timestamp.proto";

enum EventType {

 ...

 Publish = #;

 Ack = #;

 Subscribe = #;

 ...

}

/**

 Default response message

 */

message Response {

 /**

 Request id for req/res matching

 */

 int64 ReqID = 1 [json_name = "reqID"];

 /**

116

 If change went ok

 */

 bool Success = 2 [json_name = "success"];

 /**

 On publishes you may algo get the created message ID

 */

 optional string MsgID = 3 [json_name = "msgID"];

}

/**

 Response for ChannelPubRequest

 */

message ChannelPubResponse {

 repeated Response Published = 1 [json_name = "published"];

}

/**

 Request to batch publish

 */

message ChannelPubRequest {

 /**

 List of publishes to make

 */

 repeated PubRequestInfo Publishes = 1 [json_name = "publishes"];

}

/**

 Publish request information

 */

message PubRequestInfo {

 /**

 Publish target channel

 */

 string Channel = 1 [json_name = "channel"];

 /**

 Publish event name (user defined)

 */

 string Event = 2 [json_name = "event"];

 /**

 Publish payload

 */

 bytes Payload = 3 [json_name = "payload"];

 /**

 Extra features to apply

 */

 optional ChannelPubExtras Extra = 4 [json_name = "extra"];

 /**

 Request id for req/res matching

 */

 optional int64 ReqID = 5 [json_name = "reqID"];

}

/**

117

 Extra possible feature, will only work if channel supports it

 */

message ChannelPubExtras {

 /**

 If publish should be stored

 */

 bool store = 1 [json_name = "store"];

 /**

 If publish should trigger a push notification

 */

 bool push = 2 [json_name = "push"];

 /**

 If publish should be retained

 */

 bool retain = 3 [json_name = "retain"];

}

/**

 Request to batch subscribe

 */

message SubscribeRequest {

 /**

 Request id for req/res matching

 */

 int64 ReqID = 1 [json_name = "reqID"];

 /**

 List of channels to subscribe

 */

 repeated ChannelSubscribeInfo Channels = 2 [json_name = "channels"];

}

/**

 Response for SubscribeRequest

 */

message SubscribeResponse {

 /**

 Request id for req/res matching

 */

 int64 ReqID = 1 [json_name = "reqID"];

 /**

 List of channels that subscribe worked

 */

 repeated string SubscribedChannels = 2 [json_name =

"subscribedChannels"];

}

/**

 Channel to be subscribed and last client known timestamp for message

recover

 */

message ChannelSubscribeInfo {

 string Channel = 1 [json_name = "channel"];

118

 optional int64 Timestamp = 2 [json_name = "timestamp"];

}

/**

 Request to batch unsubscribe

 */

message UnsubscribeRequest {

 /**

 Request id for req/res matching

 */

 int64 ReqID = 1 [json_name = "reqID"];

 /**

 List of channels to unsubscribe from

 */

 repeated string Channels = 2 [json_name = "channels"];

}

/**

 Wrapper for every single message, it defines it's purpose and with

payload if available

 */

message Envelope {

 /**

 The reason for the message

 */

 EventType Event = 1 [json_name = "event"];

 /**

 The payload associated with the message if available

 */

 bytes Payload = 2 [json_name = "payload"];

}

/**

 Message for a channel publish

 */

message ChannelPublish {

 /**

 Target channel

 */

 string Channel = 1 [json_name = "channel"];

 /**

 Event of the publish (user defined)

 */

 string Event = 2 [json_name = "event"];

 /**

 Payload of the publish

 */

 bytes Payload = 3 [json_name = "payload"];

 /**

 Generated msgID

 */

 string MsgID = 4 [json_name = "msgID"];

119

 /**

 Timestamp of the publish

 */

 int64 Timestamp = 5 [json_name = "ts"];

 /**

 Node generated sequence

 */

 optional string ChannelSerial = 6 [json_name = "channelSerial"];

}

APÊNDICE H

120

Análise e Especificação de

Requisitos

AppSockets
Versão 1.1

Preparada por Tiago Lima

17/05/2023

121

Índice

1. Introdução .. 123

1.1 Objetivos ... 123

1.2 Público-Alvo e Sugestões de Leitura .. 123

1.3 Âmbito do Projeto ... 124

1.4 Glossário ... 125

1.5 Referências ... 126

1.6 Organização deste Documento ... 126

2. Descrição Geral .. 126

2.1 Classes de Utilizadores .. 126

2.2 Funcionalidades do Produto ... 128

2.3 Ambiente de Operação .. 129

2.4 Broker ... 129

2.5 Admin ... 130

2.6 Cluster .. 130

2.7 Engine ... 130

2.8 Hub.. 130

2.9 Channel ... 131

2.10 Connection .. 131

2.11 Redis.. 131

2.12 SQL ... 131

2.13 Auth .. 131

2.14 Storage .. 132

2.15 Debug .. 132

2.16 Discovery .. 132

2.17 Restrições de Desenho e Implementação ... 132

2.18 Documentação para os Utilizadores ... 133

2.19 Pressupostos e Dependências .. 133

3. Requisitos das Interfaces Externas... 134

3.1 Interfaces de Utilizador ... 134

3.2 Interfaces de Hardware ... 134

3.3 Interfaces de Software e de Comunicação ... 134

4. Requisitos Funcionais do Sistema... 135

4.1 Vista Geral dos Requisitos Funcionais do S.I. .. 135

4.2 Os Requisitos Funcionais para Autenticação .. 138

4.3 Os Requisitos Funcionais para “Cliente” ... 140

122

4.4 Os Requisitos Funcionais para “Administrador” .. 147

4.5 Os Requisitos Funcionais para “Serviço”... 156

5. Requisitos Não-Funcionais .. 162

5.1 Requisitos de Performance ... 162

5.2 Requisitos de Proteção .. 162

5.3 Requisitos de Segurança ... 162

5.4 Requisitos Não-Funcionais das Regras de Negócio .. 163

6. Outros Requisitos ... 163

7. Lista de Itens a Elaborar na Fase de Desenho .. 163

8. Continuidade do Processo de Desenvolvimento .. 164

123

Lista de Tabelas do SRS

Tabela 1 - Lista de stakeholders previstos para o AppSockets .. 126

Tabela 2 - Lista de Níveis de Acesso e Perfis previstos para o AppSockets 126
Tabela 3 - Divisão modular proposta para o S.I. ... 127

Histórico de Revisões

Nome Data Motivo da Revisão Versão

Tiago Lima 2023-04 Documento Inicial 1.0

Tiago Lima 2023-05 Atualizações de requisitos funcionais 1.1

1. Introdução

1.1 Objetivos

O projeto AppSockets tem como objetivo servir de infraestrutura para o envio de informação em soft

real-time entre clientes e servidores, e ao mesmo tempo substituir um sistema com objetivos similares,

mantendo o máximo de compatibilidade possível de forma a facilitar a migração para o novo um

sistema.

NAPPS é uma empresa SaaS (software como serviços) B2B (de empresa para empresa) com o propósito

de construir a melhor experiência para os seus clientes e utilizadores, assim sendo, a empresa lida

maioritariamente com aplicações móveis em contexto de e-commerce, e neste contexto surgiu uma

necessidade de comunicar com as aplicações de forma quase instantânea sempre que a aplicação esteja

em execução.

Para esse propósito, é necessário criar infraestrutura para o envio de informação em tempo real de forma

bidirecional entre cliente e servidores. A infraestrutura não será exclusiva às aplicações móveis,

tornando possível a sua utilização por outros serviços que possam necessitar de comunicação em tempo

real.

1.2 Público-Alvo e Sugestões de Leitura

Este documento tem como principais destinatários os elementos da equipa de desenvolvimento e gestão

de projeto, adicionalmente, também poderá ser utilizado pelo conjunto de utilizadores que pretendam

contribuir e/ou maximizar a sua experiência enquanto potenciais stakeholders. Este documento poderá

ainda ser distribuído por todos os outros stakeholders associados ao projeto.

Este SRS apresenta uma descrição detalhada do projeto AppSockets, bem como a descrição das

características e de todo o conjunto de requisitos funcionais e não-funcionais acordados.

124

1.3 Âmbito do Projeto

O projeto AppSockets permitirá substituir um sistema interno existente enquanto adiciona novas

funcionalidades. Sendo que já existe um projeto interno em produção com esta responsabilidade é

necessário manter compatibilidade com o seu funcionamento, enquanto novas funcionalidades são

adicionadas, e problemas existentes com o projeto interno são corrigidos. Os principais problemas a ter

em conta são:

● Não ser escalável;

● Exige muita configuração;

Portanto, este projeto tem como objetivos:

● Ser capaz de substituir o projeto atual em produção

● Adicionar funcionalidades além do projeto existente

● Ser extensível para novos casos de uso

● Reduzir as configurações necessárias para sua utilização

● Fornecer API para serviços internos

● Fornecer API para aplicações clientes

125

1.4 Glossário

Termo Definição
Especificação de Requisitos Documento que descreve todas as funções do sistema proposto, bem como os

requisitos não-funcionais e restrições sob as quais deve operar.

Stakeholder Qualquer entidade com interesse direto ou indireto neste projeto

Utilizador Cliente que utilize as funcionalidades implementadas via API

API API (de Application Programming Interface) é um conjunto de rotinas e

padrões estabelecidos por um software para a utilização das suas

funcionalidades por aplicativos que não pretendem envolver-se em detalhes

da implementação das mesmas, mas apenas usar os seus serviços.

SRS SRS (de Software Requirements Specification) é a tradução de Relatório de

Entrega de Requisitos

Deliverable Termo utilizado em gestão de projetos para descrever um produto ou serviço

produzido e entregue ao cliente no contexto do desenvolvimento do projeto

IoT IoT é uma rede de dispositivos conectados à Internet que coletam e

compartilham dados, permitindo a automação de processos e tomadas de

decisão baseadas em dados. Os dispositivos IoT usam tecnologias de rede

sem fio e podem ser usados em várias áreas, como saúde, transporte e

indústria.

PubSub Publish and Subscribe, um modelo de comunicação em que os participantes

se comunicam por meio de mensagens transmitidas por um intermediário

(broker). Neste modelo, os participantes são divididos em duas categorias:

publishers e subscribers. Publishers são responsáveis por enviar mensagens

para o intermediário, enquanto subscribers se inscrevem em determinados

tópicos de interesse. Quando um publisher envia uma mensagem, o

intermediário envia a mensagem para todos os subscribers que estão inscritos

no tópico relevante. Este modelo é muito utilizado em sistemas distribuídos

para comunicação assíncrona e escalável entre diferentes partes do sistema,

permitindo a comunicação eficiente entre muitos participantes sem a

necessidade de cada participante saber com quem está se comunicando. O

pub/sub é amplamente utilizado em aplicações de IoT (Internet das Coisas),

sistemas de mensagens e sistemas de eventos, permitindo que os participantes

se comuniquem de forma eficiente e escalável. Ao longo deste documento o

nome PubSub ou Pub/Sub será utilizado, tendo ambos o mesmo significado.

Subscriber Um subscriber em PubSub é um componente que se inscreve em tópicos para

receber mensagens publicadas por publishers, geralmente implementado

como um programa que se conecta a um broker de mensagens. Ao receber

uma mensagem, o subscriber pode executar uma ação ou armazenar a

mensagem para processamento posterior.

Publisher Um Publisher em PubSub é um componente que publica mensagens em um

ou mais tópicos. Ele geralmente é implementado como um programa ou

processo que se conecta a um broker de mensagens e envia as mensagens

para o tópico correspondente. Ao publicar uma mensagem, o Publisher não

sabe quais subscribers, se houver algum, receberão a mensagem. É

responsabilidade do broker encaminhar a mensagem para os subscribers

inscritos nos tópicos relevantes. O processo de publicação de mensagens é

geralmente assíncrono e permite que os Publishers continuem a enviar

mensagens sem serem afetados pelo processamento dos subscribers.

Broker Um broker é um componente de software usado como intermediário na

comunicação entre sistemas ou aplicativos. Ele recebe mensagens de um

emissor e as encaminha para um ou mais recetores interessados em recebê-

las. Os benefícios do uso de um broker incluem redução de complexidade do

sistema, melhoria da escalabilidade e redução da sobrecarga de comunicação

direta entre sistemas.

Cluster Um cluster é um conjunto de computadores interconectados que trabalham

juntos como um único sistema para realizar tarefas complexas. Os membros

do cluster distribuem a carga de trabalho entre si, permitindo que as tarefas

sejam realizadas mais rapidamente.

126

1.5 Referências

Existem outros documentos da NAPPS no âmbito deste projeto, que suportam a informação contida

neste plano, nomeadamente:

● Plano de Projeto

● Proposta Formal

● Cronograma

Este documento de especificação de requisitos foi desenvolvido de acordo com as regras vigentes e

padronizadas relativas à descrição de requisitos funcionais e não-funcionais.

1.6 Organização deste Documento

As próximas seções têm como objetivo a visão geral dos atores e perfis de acesso, das funcionalidades

do produto final e dos entregáveis a produzir no contexto do projeto.

2. Descrição Geral

2.1 Classes de Utilizadores

O sistema AppSockets prevê a existência de [k] tipos de entidades (atores do sistema e stakeholders) e

[n] perfis de acesso distintos, ambos detalhados nas tabelas seguintes:

Ator/StakeHolder Descrição Perfil
Cliente Entidade para quem vai ser desenvolvida a aplicação Cliente

Programador Entidade com a função de desenvolver a aplicação. Administrador

Utilizador Entidade com a função de utilizar a aplicação. Serviço

Tester Entidade com a função de testar a aplicação. Administrador

Tabela 4 - Lista de stakeholders previstos para o AppSockets

A tabela seguinte ilustra os tipos de entidades/perfis de acesso e respetivo nível de privilégios, que

podem aceder ao sistema de informação AppSockets, de modo a utilizarem as funcionalidades

permitidas a cada nível (descrição detalhada nos casos de uso em secção adiante deste SRS).

Perfil Descrição Nível
Cliente O perfil de cliente consiste numa aplicação cliente que irá se conectar a aplicação, este irá pertencer a

hub e terá as permissões que sejam dados pelo AuthProvider do hub. Esta entidade nunca terá

permissões para manipular qualquer tipo de configuração na aplicação.

Cliente

Serviço Perfil de serviço consiste nas aplicações que irão interagir com a aplicação por meios internos, têm

acesso a quase todas funcionalidades disponíveis.

Service

Administrador Perfil de administrador consiste em um utilizador interno com permissão para manualmente alterar

configurações na aplicação, tendo acesso a todas funcionalidades.

Admin

Tabela 5 - Lista de Níveis de Acesso e Perfis previstos para o AppSockets

127

De forma a respeitar possíveis situações de exceção relativamente às permissões dos perfis propostos

na tabela 2, sugere-se a modularização do sistema de S.I. em grandes unidades orientadas a objetivos,

de maneira a poder gerir permissões não apenas ao nível do perfil (tabela 2) mas também ao nível do

utilizador individual. Sugere-se assim a seguinte divisão modular:

Módulo Descrição Acess

o
Módulo 1 Conjunto de funcionalidades e informação para o Cliente Cliente

Módulo 2 Conjunto de funcionalidades e informação para o Serviço Service

Módulo 3 Conjunto de funcionalidades e informação para o Administrador Admin

Tabela 6 - Divisão modular proposta para o S.I.

128

2.2 Funcionalidades do Produto

O projeto AppSockets a ser construído consiste numa aplicação multi-tenant e distribuída, que permite

a intercomunicação entre cliente e serviços em soft real-time.

Sendo uma aplicação multi-tenant, existe uma separação entre estes, sendo esta representada por hubs.

Cada hub tem as suas próprias sessões dos clientes, os seus próprios channels e suas próprias

configurações. Cada hub, pode fornecer a sua própria forma de autenticação através vez de um objeto

nomeado de AuthProvider, este objeto permite definir como o pedido de autenticação será entregue

sendo as opções possíveis: NATS e HTTP, adicionalmente, podem ser configurados cabeçalhos e rota

do pedido.

Utilizando o método PubSub os clientes e serviços serão capazes de publicar eventos para outros

elementos interessados, organizando os eventos enviados por channels, equivalente a tópicos.

Cada channel pode pertencer a único tenant, permitindo nomes de channels iguais entre tenants. Este

tem as suas próprias configurações, que podem ser definidas por cada um, ou num grupo com o nome

de namespace, caso não exista em nenhum, o tenant que é representado por um hub na aplicação terá

sempre uma configuração para aplicar caso mais nenhuma exista. De forma que um channel pertença a

um namespace, este deve começar com o nome do namespace e ter um separador (”:”) antes do nome

do channel, por exemplo, “namespace:channel”.

Além de permitir simplesmente PubSub, cada channel tem um conjunto de funcionalidades disponíveis,

sendo estas:

● Retain Message;

● Store Message;

● Push Message;

● Presence;

● Public;

● Client Publish;

● Allow Anonymous;

● Occupancy;

● Channel Live History.

Além das funcionalidades, existem tipos de channels que podem suportar ou não as funcionalidades

previamente definidas, este tipo de channels consistem nos seguintes:

● Default;

● Document;

● Notification.

As funcionalidades previamente descritas, são modulares, de forma a permitir criar tipos de channels e

reutilizar as funcionalidades. Este tipo de channels são definidos através vez de prefixos no channels

por exemplo “doc:channel” e “notification:channel” e sendo o tipo Default, o ativo por defeito.

As sessões que representam uma ligação de uma aplicação cliente, estas podem utilizar os protocolos

de comunicação WebSocket e SSE. Cada uma destas pode pertencer a somente um hub, e podem

129

subscrever ou publicar para qualquer channel dentro do hub desde que tenham permissões para tal que

são definidas na resposta recebida ao realizar o pedido de autenticação definido pelo AuthProvider.

Por fim, de forma a permitir que serviços sejam capazes de comunicar com a aplicação, existem duas

APIs sendo uma por NATS para serviços e outra por HTTP tanto para serviços como administrador.

O capítulo 4 deste SRS é totalmente dedicado à descrição dos requisitos funcionais do AppSockets.

2.3 Ambiente de Operação

A aplicação será planeada para ser executada na plataforma AWS Fargate ou ECS (Elastic Container

Service) e localmente em caso de desenvolvimento. Naturalmente será utilizado a tecnologia Docker.

No ambiente da plataforma AWS, é necessário que todas as instâncias estejam na mesma rede, ou

ligação entre estes, adicionalmente, tem que ser permitido tráfego TCP e UDP e as seguintes portas

devem estar abertas: 80, 8080, 4040, 9999, 7946. Estas são as portas definidas por defeito.

Em ambiente local, cabe ao utilizar de fornecer um ambiente que suporte o funcionamento da aplicação,

este pode ser feito através do software Docker, ou uma rede que autorize tráfego TCP e UDP. Caso seja

somente necessário executar uma instância o localhost deverá funcionar normalmente.

Além de configurações de rede, existem configurações que devem estar presentes em conjunto com a

aplicação. Estas configurações adicionais são divididas nas seguintes categorias:

● Broker;

● Admin;

● Cluster;

● Engine;

● Hub;

● Session;

● Channel;

● Connection;

● Redis;

● SQL;

● Auth;

● Storage;

● Debug;

● Discovery.

Todas estas configurações devem estar presentes num ficheiro “config.yaml”, que deve ser criado pelo

elemento que deseja executar a aplicação.

As especificações das configurações serão apresentadas nos seguintes tópicos.

2.4 Broker

A categoria Broker define as propriedades necessárias para a aplicação se conectar e

autenticar com um servidor NATS.

130

As propriedades da categoria Broker, utilizam como prefixo “broker” e existem as seguintes

propriedades:

“broker.host” - URL para o servidor NATS;

“broker.user” - Utilizador de autenticação;

“broker.password” - Password de autenticação;

“broker.subject” - Prefixo para todos os subjects utilizados na aplicação.

2.5 Admin

A categoria admin define como administradores são autenticados, nesta categoria existe

somente uma propriedade “admin.url” que aponta para o url onde o pedido de autenticação vai

ser enviado.

2.6 Cluster

Nesta categoria são definidas propriedades relativamente à segurança de comunicação entre

os membros do cluster. Existem somente duas propriedades.

“cluster.membership.secretKey” - Chave partilhada entre todos os membros para iniciar uma

comunicação segura.

“cluster.rpc.secretKey” - Chave partilhada utilizada para realizar pedidos RPC.

2.7 Engine

Nesta categoria, são definidas propriedades que afetam todos os utilizadores da aplicação. As

propriedades existentes são as seguintes:

“engine.sessionMetricsInterval” - Intervalo definido entre coleta o número de sessões.

“engine.allowDynamicHubs” - Se é permitido a criação dinâmica de hubs sem antes ser

definido.

“engine.maxLiveHistorySize” - Número máximo de mensagens armazenada em live history.

“engine.statsCollectInterval” - Intervalo definido entre coleta de métricas gerais.

2.8 Hub

Na categoria hub, são definidas propriedades relativas a temporizações do hubs, com as

propriedades “hub.closeTimeout”, onde é definido o intervalo de espera para fechar o hub

assim que não tenha nenhuma sessão conectada. Por fim, existe a propriedade

“hub.authenticateRequestTimeout” que define o tempo máximo de espera para o pedido de

autenticação de uma sessão.

131

2.9 Channel

Na categoria channel, são definidas propriedades relativamente ao channel, consistindo nas

seguintes propriedades.

“channel.historyPageSize” - Número de mensagens enviadas ao tentar recuperar mensagens,

ou seja, controla o número máximo de paginação ao recuperar mensagens perdidas.

“channel.enableLiveHistory” - Se a funcionalidade Live History deve ser ativa ou não.

“channel.retainMsgDuration” - Define durante quanto tempo uma retained message deve ser

armazenada.

2.10 Connection

Na categoria connection são definidas propriedades relativas aos tipos de conexões,

nomeadamente SSE e WebSockets.

Para SSE existe somente a propriedade “connection.sse.msgBufferSize”, onde é definido o

número máximo de mensagens em espera a serem enviadas para o cliente, mensagens

recebidas além quando este buffer está no limite são ignoradas.

Para WebSockets existem três propriedades, sendo “connection.ws.msgSendBufferSize” que

é equivalente à de SSE e “connection.ws.pingInterval” e “connection.ws.pongInterval” onde

são definidos os intervalos para o PING/PONG dos WebSockets de forma a garantir que a

conexão de mantêm aberta.

2.11 Redis

Assim como o nome da categoria indicada, aqui são definidas as propriedades para conectar à

aplicação Redis ou um cluster da aplicação Redis.

“redis.address” - URL para o servidor Redis.

“redis.username” - Username de autenticação;

“redis.password” - Password de autenticação;

“redis.db” - Número de base de dados a ser utilizada.

2.12 SQL

propriedades relativas às conexões SQL em geral, com as seguintes propriedades.

“sql.idleConnections” - Número máximo de conexões paradas.

“sql.maxConnections” - Número máximo de conexões permitida.

“sql.connectionMaxLifetime” - Duração máxima de uma conexão.

2.13 Auth

132

Nesta categoria são definidas propriedades para a criação de tokens pela aplicação, com a

seguintes propriedades.

“auth.algorithm” - Algoritmo de encriptação do token.

“auth.issuer” - Nome do criador do token;

“auth.session.secret” - Chave para encriptar e desencriptar tokens de sessões;

“auth.admin.secret” - Chave para encriptar e desencriptar tokens de administradores;

2.14 Storage

Nesta categoria é definido o tipo de base de dados a ser utilizada, por agora somente a base

de dados PostgreSQL é suportada e com as seguintes propriedades.

“storage.postgres.host” - URL para o servidor ou proxy.

“storage.postgres.port” - Porta a ser utilizada.

“storage.sslMode” - Se SSL deve ser utilizada na ligação.

“storage.user” - User para autenticação.

“storage.password” - Password para autenticação.

“storage.dbName” - Nome da base de dados a ser utilizada.

2.15 Debug

Nesta categoria são definidas apenas algumas propriedades para permitir o inspecionamento

da aplicação como “debug.pprof” se o pprof deve ser ativo, e “debug.level” para definir a

verbosidade dos logs da aplicação.

2.16 Discovery

Nesta categoria existe somente um proprieadade onde é definido como o descobrimento de

outros servidores deve ser realizada com a propriedade “discovery.type” que apenas suporta

“udp” e “aws_ecs”.

A aplicação WEB será desenvolvida com suporte de dados baseado em PostgreSQL e suporte

aplicacional baseado em Go. As APIs fornecidas por HTTP irão utilizar como formato de comunicação

de informação o formato JSON, exceto nas APIs de conexão contínua onde será utilizado o formato

Protobuf. A API fornecida pelo software NATS irá utilizar Protobuf como formato de comunicação de

informação.

2.17 Restrições de Desenho e Implementação

133

O sistema será desenhado e implementado de modo a cumprir as recomendações de segurança da norma

27001, garantindo assim, desde logo, os requisitos de privacidade, confidencialidade e proteção de

dados pessoais e legais que devem ser assegurados em aplicações deste tipo e área.

A comunicação com as API de interoperabilidade será efetuada de forma totalmente encriptada, sendo

recomendado desde logo um acesso baseado em protocolo HTTPS.

2.18 Documentação para os Utilizadores

Estão previstos dois tipos de manuais para os dois tipos de utilizadores definidos no contexto do

AppSockets: para a equipa técnica/informática, que pode efetuar a manutenção aos produtos que vão

utilizar ou integrar com as API do AppSockets, está previsto um manual em formato digital com a lista

das funcionalidades e respetivo contexto de utilização, para as funções da API.

Para os utilizadores da aplicação, está prevista a possibilidade de ligar/desligar os tutoriais da aplicação

de forma contextual (ajuda por funcionalidade ativa).

2.19 Pressupostos e Dependências

Esta projeto tem as seguintes dependências:

● Existência de uma base de dados Postgres;

● Rede de internet com permissões para UDP e TCP e que todas instâncias tenham ligações

entre estes;

● Existência de um servidor ou cluster Redis;

● Existência de um servidor ou cluster NATS;

Todas estas dependências externas devem estar acessíveis a todas as instâncias da aplicação ao longo

do seu funcionamento.

A aplicação tem a capacidade de ser executada no sistema operativo Windows, MacOS e as

distribuições mais comuns de Linux, sendo o sistema operativo principal a distribuição de Linux

desenvolvido pela AWS.

Naturalmente, sendo este projeto para ser utilizado na plataforma AWS, espera-se que assim exista e

com acesso aos recursos: AWS Load Balancer, Target Groups, ECS, Cloud Watch e ferramentas

complementares destes.

134

3. Requisitos das Interfaces Externas

3.1 Interfaces de Utilizador

Uma vez que o sistema a desenvolver fornece somente APIs a serem utilizadas por outras aplicações,

não estão previstas interfaces visuais.

3.2 Interfaces de Hardware

Uma vez que o sistema a desenvolver assenta em frameworks padronizados e devidamente

estabelecidos, não estão previstas ligações ou interfaces especiais ao hardware dos dispositivos.

3.3 Interfaces de Software e de Comunicação

Este projeto consiste numa aplicação que irá correr num servidor, sem uma interface visual para

utilizadores, no entanto, existe comunicação com outros serviços através do software NATS. Desta

forma, existem duas interfaces de software, sendo uma API exposta por HTTP que espera pedidos em

JSON e responde da mesma forma, e uma API acessível através do software NATS com o formato de

mensagens definidas em protocol buffers.

De lembrar, que toda comunicação com interfaces não está assegurada com SSL providência pela

aplicação, mas sim espera-se que esta seja providência pelo software NATS e no caso de HTTP através

do serviço AWS Load Balancer.

135

4. Requisitos Funcionais do Sistema

Esta secção descreve detalhadamente todos os requisitos funcionais do AppSockets e a enumeração dos

requisitos não-funcionais que possam estar relacionados com a funcionalidade.

4.1 Vista Geral dos Requisitos Funcionais do S.I.

A figura seguinte ilustra as grandes funcionalidades do AppSockets para o perfil Cliente:

Identificador Visão Geral Requisitos Funcionais AppSockets para Clientes

Descrição O ator cliente acede à aplicação AppSockets

Requisitos não-funcionais Ligação à Internet Ativa

136

A figura seguinte ilustra as grandes funcionalidades do AppSockets para o perfil Administrador:

Identificador Visão Geral Requisitos Funcionais AppSockets para Administrador

Descrição O ator Administrador gere a aplicação AppSockets

Requisitos não-funcionais Ligação à Internet Ativa

137

A figura seguinte ilustra as grandes funcionalidades do AppSockets para o perfil Serviço:

Identificador Visão Geral Requisitos Funcionais AppSockets para Serviços

Descrição O ator serviço acede à aplicação AppSockets

Requisitos não-funcionais Ligação à Internet Ativa

Conexão com o software NATS

Conexão autenticada e autorizada no software NATS

138

4.2 Os Requisitos Funcionais para Autenticação

Com o objetivo de controlar o acesso e ações do utilizador no contexto do AppSockets, estão previstas

as seguintes funcionalidades:

4.2.1 Visão Geral das Funcionalidades de Autenticação

Identificador & Nome Cliente:RF:01 – Conectar

Descrição Um utilizador conecta-se à aplicação e estabelece-se uma sessão, de forma a poder

realizar outras operações.

Pré-Condições Acesso à internet e dispositivo compatível.

Pós-Condições Acesso aos recursos públicos da aplicação.

Requisitos não-

funcionais

Acesso à internet

139

4.2.2 Requisito Funcional “Autenticar”

Identificador & Nome Cliente:RF.02 - Autenticar

Descrição Um utilizador realiza uma autenticação. De forma a realizar esta, o Auth Provider configurado

no hub será utilizado.

Pré-Condições

Acesso à internet e dispositivo compatível.

Existência prévia do hub caso hub dinâmicos não estejam permitidos.

Existência de um Auth Provider e de um recetor do pedido configurado no Auth Provider.

Uma sessão estabelecida, por um meio de comunicação bidirecional.

Pós-Condições Acesso aos recursos públicos e autorizados da aplicação, caso a autenticação seja sucedida,

caso contrário, dependendo se o hub permite utilizadores anônimos ou não a sessão será

terminada.

Percurso Normal

Utilizando uma sessão bidirecional ativa, o cliente envia uma mensagem definida no protocolo

como de autenticação, a aplicação irá redirecionar esta mensagem pelo meio definido no

AuthProvider e irá aguardar uma resposta. Assim que recebida, as permissões da sessão serão

atualizadas, e mensagens com estas mensagens serão enviadas para o cliente.

Na eventualidade, da autenticação não for sucedida, seja devido a falhas ou informação

inválida e o hub não permitir sessões anônimas, esta será terminada de imediato, caso

contrário será somente enviada uma mensagem a notificar que a operação não foi bem

sucedida.

Percursos

Alternativos

Além do processo normal de autenticação, é possível iniciar uma sessão pré-autenticada,

através da utilização de um token de autenticação ao estabelecer a sessão, ou ao restaurar uma

sessão.

Req. não-funcionais

Acesso à internet.

A sessão tem um tempo limite para se autenticar caso o hub não permita sessões anónimas.

140

4.3 Os Requisitos Funcionais para “Cliente”

4.3.1 Requisito Funcional “Publicar”

Identificador & Nome Cliente:RF.03 - Publicar

Descrição Um utilizador publica um evento num channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Uma sessão estabelecida, por um meio de comunicação bidirecional.

Autorização para o channel a ser publicado.

Pós-Condições A mensagem deve ser processada e enviada para todas sessões subscritas no channel.

Percurso Normal

Utilizando uma sessão bidirecional ativa, o cliente envia uma mensagem definida no protocolo

como de publicação com o channel indicado e de um tipo que o permite. A aplicação irá

receber esta mensagem, verificar a autorização e enviar a mensagem para o channel a ser

processado. Caso a mensagem envie um identificador de mensagem, o cliente irá receber uma

confirmação da publicação da mensagem.

Na eventualidade, da sessão não ter permissões suficientes, será somente enviada uma

mensagem a notificar que a operação não foi bem sucedida.

Percursos

Alternativos

Além do processo normal de publicação numa sessão, é possível o fazer utilizando um pedido

HTTP com um token de autenticação com permissões para o channel em questão.

Req. não-funcionais

Acesso à internet.

141

4.3.2 Requisito Funcional “Subscrever”

Identificador & Nome Cliente:RF:04 - Subscrever

Descrição Um utilizador subscreve-se a um channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Uma sessão estabelecida, por um meio de comunicação bidirecional.

Autorização para o channel a ser subscrito.

Pós-Condições Futuras mensagens no channel serão recebidas pela sessão.

Percurso Normal

Utilizando uma sessão bidirecional ativa, o cliente envia uma mensagem definida no protocolo

como de subscrição com o channel indicado. A aplicação irá receber esta mensagem, verificar

a autorização e adicionar a subscrição ao channel. O cliente receberá uma confirmação da

subscrição da mensagem.

Na eventualidade, da sessão não ter permissões suficientes, será somente enviada uma

mensagem a notificar que a operação não foi bem sucedida.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.3.3 Requisito Funcional “Remover Subscrição”

Identificador & Nome Cliente:RF.05 - Remover Subscrição

Descrição Um utilizador remove a sua subscrição a um channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Uma sessão estabelecida, por um meio de comunicação bidirecional.

Sessão já subscrita ao channel.

Pós-Condições Futuras mensagens no channel não serão recebidas pela sessão.

Percurso Normal

Utilizando uma sessão bidirecional ativa, o cliente envia uma mensagem definida no protocolo

como de remover a subscrição com o channel indicado. A aplicação irá receber esta

mensagem, verificar se este está subscrito e remover a subscrição ao channel. O cliente

receberá uma confirmação da remoção da subscrição da mensagem.

Na eventualidade, de uma falha ocorrer, será enviada uma mensagem a notificar que a

142

operação não foi bem sucedida.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.3.4 Requisito Funcional “RPC”

Identificador & Nome Cliente:RF.06 - RPC

Descrição Um utilizador realiza um RPC (Remote Procedure Call).

Pré-Condições

Acesso à internet e dispositivo compatível.

Uma sessão estabelecida, por um meio de comunicação bidirecional.

Sessão autenticada e com permissão para o RPC a realizar.

Pós-Condições Não identificadas

Percurso Normal

Utilizando uma sessão bidirecional ativa, o cliente envia uma mensagem definida no protocolo

como de RPC com o método indicado. A aplicação irá receber esta mensagem, verificar se a

sessão tem autorização para o método e irá redirecionar o conteúdo da mensagem por NATS

para um recipiente interessado no método e aguardar a sua resposta. Assim que a resposta seja

recebida, esta seria enviada para o cliente.

Na eventualidade, de uma falha ocorrer, será enviada uma mensagem a notificar que a

operação não foi bem sucedida.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.3.5 Requisito Funcional “Pedir histórico de channel”

Identificador & Nome Cliente:RF:07 - Pedir histórico de channel

Descrição Um utilizador envia um pedido para receber o histórico de um channel e recebe uma página

com o histórico disponível.

Pré-Condições

Acesso à internet e dispositivo compatível.

143

Uma sessão estabelecida, por um meio de comunicação bidirecional.

Sessão com permissão para o channel a ser utilizado.

Pós-Condições Não identificadas.

Percurso Normal

Utilizando uma sessão bidirecional ativa, o cliente envia uma mensagem definida no protocolo

como de pedir histórico de channel com o channel indicado. A aplicação irá receber esta

mensagem, verificar se a sessão tem autorização para o pedido e buscar uma página de últimas

mensagens que será enviada de volta para o cliente. Neste pedido, pode ser enviado a última

timestamp que o cliente tenha, de forma a receber mensagens mais recentes do que a

timestamp enviada.

Na eventualidade, de uma falha ocorrer, será enviada uma mensagem a notificar que a

operação não foi bem sucedida.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.3.6 Requisito Funcional “Buscar Documento”

Identificador & Nome Cliente:RF:08 - Buscar Documento

Descrição Um utilizador envia um pedido para receber o valor atual de um documento pertencente a um

channel e o recebe.

Pré-Condições

Acesso à internet e dispositivo compatível.

Uma sessão estabelecida, por um meio de comunicação bidirecional.

Sessão com permissão para o channel a ser utilizado.

O channel a ser utilizado deve ser do tipo channel.

Pós-Condições Não identificadas

Percurso Normal

Utilizando uma sessão bidirecional ativa, o cliente envia uma mensagem definida no protocolo

como de buscar um documento pertencente de um channel. A aplicação irá receber esta

mensagem, verificar se a sessão tem autorização para o pedido e enviar uma cópia do

documento do channel. Na eventualidade, de uma falha ocorrer será enviada uma mensagem a

notificar que a operação não foi bem sucedida.

Percursos

Alternativos

Não existem percursos alternativos.

144

Req. não-funcionais

Acesso à internet.

4.3.7 Requisito Funcional “Atualizar Documento”

Identificador & Nome Cliente:RF.09 - Atualizar Documento

Descrição Um utilizador envia um pedido para atualizar o documento de um channel e recebe uma

página com o histórico disponível.

Pré-Condições

Acesso à internet e dispositivo compatível.

Uma sessão estabelecida, por um meio de comunicação bidirecional.

Sessão com permissão para o channel a ser utilizado.

Pós-Condições O documento deve manter as alterações efetuadas e enviar as operações realizadas para todas

as sessões subscritas.

Percurso Normal

Utilizando uma sessão bidirecional ativa, o cliente envia uma mensagem definida no protocolo

como de atualização de documento com o channel indicado. A aplicação irá receber esta

mensagem, verificar se a sessão tem autorização para o pedido e aplicar as alterações

enviadas, posteriormente deve enviar estas alterações para todas sessões e enviar uma

confirmação de que a operação foi realizada ao cliente.

Na eventualidade, de uma falha ocorrer, será enviada uma mensagem a notificar que a

operação não foi bem sucedida.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.3.8 Requisito Funcional “Marcar notificação como lida”

Identificador & Nome Cliente:RF:10 - Marcar notificação como lida

Descrição Um utilizador envia um pedido para marcar uma ou mais notificações como lidas num

channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Uma sessão estabelecida, por um meio de comunicação bidirecional.

Sessão com permissão para o channel a ser utilizado.

145

Pós-Condições As notificações devem manter o seu estado atualizado de lido e devem notificar todos inscritos

das alterações.

Percurso Normal

Utilizando uma sessão bidirecional ativa, o cliente envia uma mensagem definida no protocolo

como de marcar a notificação como lida com o channel indicado. A aplicação irá receber esta

mensagem, verificar se a sessão tem autorização para o pedido e aplicar as alterações

enviadas, posteriormente deve enviar estas alterações para todas sessões e enviar uma

confirmação de que a operação foi realizada ao cliente.

Na eventualidade, de uma falha ocorrer, será enviada uma mensagem a notificar que a

operação não foi bem sucedida.

Adicionalmente, este pedido suporta realizar a alteração para um conjunto de de notificações

de forma a reduzir a quantidade de pedidos feitos.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.3.9 Requisito Funcional “Registar Push Token”

Identificador & Nome Cliente:RF:11 - Registrar Push Token

Descrição Um utilizador envia um pedido para registar o seu push token, de forma que este fique

associado.

Pré-Condições

Acesso à internet e dispositivo compatível.

Uma sessão estabelecida, por um meio de comunicação bidirecional.

Token de autenticação.

Token de Firebase pré-existente.

Pós-Condições O token deve ficar registrado e ser utilizado sempre que uma mensagem com a funcionalidade

de Push Notification for enviada.

Percurso Normal

Utilizando o token de autenticação pré-existente, o cliente envia um pedido HTTP com o

token de autenticação e Firebase token. Este fica posteriormente associado ao identificador de

utilizador.

Na eventualidade, de uma falha ocorrer, será enviado o código de erro HTTP 500.

Percursos

Alternativos

Não existem percursos alternativos.

146

Req. não-funcionais

Acesso à internet.

4.3.10 Requisito Funcional “Buscar notificações não lidas de um channel”

Identificador & Nome Cliente:RF:12 - Buscar notificações não lidas de um channel

Descrição Um utilizador envia um pedido HTTP para buscar notificações de um channel do tipo

notification e recebe de forma paginada as notificações não lidas. A paginação é baseada em

timestamps.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação com permissão para o channel a ser utilizado.

Pós-Condições Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticação pré-existente, o cliente envia um pedido HTTP com o

token de autenticação, o channel e última timestamp disponível, utilizando esta informação a

aplicação irá retornar as notificações não lidas a seguir à timestamp.

Na eventualidade, de uma falha ocorrer, será enviado o código de erro HTTP 500.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.3.11 Requisito Funcional “Buscar notificações de um channel”

Identificador & Nome Cliente:RF.13 - Buscar notificações de um channel

Descrição Um utilizador envia um pedido HTTP para buscar notificações de um channel do tipo

notification e recebe de forma paginada as notificações. A paginação é baseada em

timestamps.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação com permissão para o channel a ser utilizado.

Pós-Condições Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticação pré-existente, o cliente envia um pedido HTTP com o

token de autenticação, o channel e última timestamp disponível, utilizando esta informação a

147

aplicação irá retornar as notificações a seguir à timestamp.

Na eventualidade, de uma falha ocorrer, será enviado o código de erro HTTP 500.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4 Os Requisitos Funcionais para “Administrador”

4.4.1 Requisito Funcional “Criar Auth Provider para um Hub”

Identificador & Nome Admin:RF:14 - Criar Auth Provider para um Hub

Descrição Um administrador envia um pedido HTTP, com a informação necessária para criar um Auth

Provider pertencente a um Hub.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições Auth Provider criado deverá ficar armazenado de forma a poder ser a utilizado posteriormente.

Percurso Normal

Utilizando o token de autenticação pré-existente, o cliente envia um pedido HTTP com o

token de autenticação, o hub e configurações necessárias, utilizando esta informação a

aplicação deverá criar um Auth Provider e armazená-lo e retornar este ao administrador.

Na eventualidade, de uma falha ocorrer, será enviado o código de erro HTTP 500.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4.2 Requisito Funcional “Buscar Auth Providers”

Identificador & Nome Admin:RF:15 - Buscar Auth Providers

Descrição Um administrador envia um pedido HTTP e recebe uma lista de todos Auth Providers

existentes.

Pré-Condições

Acesso à internet e dispositivo compatível.

148

Token de autenticação de administrador.

Pós-Condições Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticação pré-existente, o cliente envia um pedido HTTP com o

token de autenticação, a aplicação deverá retornar uma lista com todos Auth Providers

previamente criados.

Na eventualidade, de uma falha ocorrer, será enviado o código de erro HTTP 500.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4.3 Requisito Funcional “Definir configurações para um channel”

Identificador & Nome Admin:RF:16 - Definir configurações para um channel

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a atribuir

configurações a um channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições As configurações aplicadas no channel devem ser propagadas por todas as instâncias

pertencentes ao cluster.

Percurso Normal

Utilizando o token de autenticação pré-existente, o cliente envia um pedido HTTP com o

token de autenticação, o hub, channel e configurações a serem aplicadas, utilizando esta

informação a aplicação deverá armazenar as configurações e notificar todo o cluster que as

configurações para aquele channel foram alteradas.

Na eventualidade, de uma falha ocorrer, será enviado o código de erro HTTP 500.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

149

4.4.4 Requisito Funcional “Buscar configurações para um channel”

Identificador & Nome Admin:RF:17 - Buscar configurações de um channel

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a retornar as

configurações atuais de um channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticação pré-existente, o cliente envia um pedido HTTP com o

token de autenticação, o hub e channel, utilizando esta informação a aplicação retornar as

configurações atualmente existentes no channel em questão.

Na eventualidade, de uma falha ocorrer será enviado o código de erro HTTP 500.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4.5 Requisito Funcional “Publicar em um channel”

Identificador & Nome Admin:RF:18 - Publicar em um channel

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a um evento

ser publicado num channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições O evento enviado deve ser enviado para todas sessões subscritas ao channel em questão.

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

o token de autenticação, o hub, channel e eventos. Utilizando esta informação a aplicação irá

publicar os eventos no channel e retornar se as publicações ocorreram com sucesso por cada

evento.

Percursos

Alternativos

Não existem percursos alternativos.

150

Req. não-funcionais

Acesso à internet.

4.4.6 Requisito Funcional “Definir metadata de um channel”

Identificador & Nome Admin:RF:19 - Definir metadata de um channel

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma que a

metadata enviada seja aplicada a um channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições A metadata enviada deve ficar armazenada

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

o token de autenticação, o hub, channel e metadata a ser aplicada. Utilizando esta informação

a aplicação irá armazenar a metadata enviada substituindo valores existentes.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4.7 Requisito Funcional “Buscar metadata de um channel”

Identificador & Nome Admin:RF:20 - Buscar metadata de um channel

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a buscar os

metadados definidos num channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

o token de autenticação, o hub e o channel. Utilizando esta informação a aplicação irá

armazenar buscar a metadata do channel e a retornar ao cliente.

Percursos Não existem percursos alternativos.

151

Alternativos

Req. não-funcionais

Acesso à internet.

4.4.8 Requisito Funcional “Definir/Atualizar namespace”

Identificador & Nome Admin:RF:21 - Definir/Atualizar namespace

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a criar um

namespace

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições As configurações aplicadas no namespace devem ser propagadas por todas instâncias

pertencentes ao cluster.

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

o token de autenticação, o hub, identificador de Channel Rules e nome do namespace.

Utilizando esta informação a aplicação irá armazenar a existência do namespace e notificar

todos membros do cluster da atualização/criação do namespace.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4.9 Requisito Funcional “Eliminar namespace”

Identificador & Nome Admin:RF:22 - Eliminar namespace

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a eliminar

um namespace

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições A eliminação no namespace deve ser propagada por todas as instâncias pertencentes ao

cluster.

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

152

o token de autenticação, o hub, e nome do namespace. Utilizando esta informação a aplicação

irá eliminar a definições armazenadas sobre a existência do namespace e notificar todos

membros do cluster da eliminação do namespace.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4.10 Requisito Funcional “Definir configurações de um hub”

Identificador & Nome Admin:RF:23 - Definir configurações de um hub

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a criar ou

atualizar as configurações de um Hub.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições As modificações no hub devem ser propagadas por todas as instâncias pertencentes ao cluster.

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

o token de autenticação, o hub e configurações a serem aplicadas. Utilizando esta informação

a aplicação armazena as configurações do hub e notifica todos membros do cluster das

alterações do hub.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4.11 Requisito Funcional “Buscar configurações de um hub”

Identificador & Nome Admin:RF:24 - Buscar configurações de um hub

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a criar ou

atualizar as configurações de um Hub.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

153

Pós-Condições Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

o token de autenticação e o hub. Utilizando esta informação a aplicação ira buscar as

configurações armazenadas do hub e retornar ao cliente.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4.12 Requisito Funcional “Criar notificação num channel”

Identificador & Nome Admin:RF:25 - Criar notificação num channel

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a criar uma

notificação num channel

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições As sessões subscritas devem receber a nova notificação criada e uma atualização no número

de notificações não lidas.

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

o token de autenticação, o hub, channel e notificação. Utilizando esta informação a aplicação

ira processar a notificação, enviar para as sessões subscritas e enviar uma confirmação de

operação ao cliente.

Na eventualidade de um erro ocorrer, uma resposta com HTTP 500 será retornada.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

154

4.4.13 Requisito Funcional “Buscar informação de presença de um channel”

Identificador & Nome Admin:RF:26 - Buscar informação de presença de um channel

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a buscar a

presença atual num channel

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

O channel deve ter a funcionalidade de presença ativa.

Pós-Condições Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

o token de autenticação, o hub e channel. Utilizando esta informação a aplicação ira copiar a

informação de presença do channel atual e enviar ao cliente.

Na eventualidade de um erro ocorrer, uma resposta com HTTP 500 será retornada.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4.14 Requisito Funcional “Definir channel rules”

Identificador & Nome Admin:RF:27 - Definir channel rules

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a definir ou

atualizar um channel rules.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições Todos os channels e hub devem ser notificados caso estejam a usar o channel rule atualizado.

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

o token de autenticação, o hub, identificador de channel rules e configurações. Utilizando esta

informação a aplicação armazena as novas configurações e notifica todas as instâncias do

cluster da alteração do channel rules.

155

Na eventualidade de um erro ocorrer, uma resposta com HTTP 500 será retornada.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.4.15 Requisito Funcional “Buscar channel rules”

Identificador & Nome Admin:RF:28 - Buscar channel rules

Descrição Um administrador envia um pedido HTTP com a informação necessária de forma a buscar as

configurações definidas num channel rules.

Pré-Condições

Acesso à internet e dispositivo compatível.

Token de autenticação de administrador.

Pós-Condições Nenhuma identificada.

Percurso Normal

Utilizando o token de autenticação pré-existente, o administrador envia um pedido HTTP com

o token de autenticação, o hub e identificador de channel rules. Utilizando esta informação a

aplicação busca o armazenamento das configurações atuais e retornar ao cliente.

Na eventualidade de um erro ocorrer, uma resposta com HTTP 500 será retornada.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

156

4.5 Os Requisitos Funcionais para “Serviço”

4.5.1 Requisito Funcional “Publicar num channel”

Identificador & Nome Service:RF:29 - Publicar num channel

Descrição Um serviço envia um pedido através do NATS com a informação necessária para publicar um

ou mais eventos num channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Conexão autenticada com NATS.

Permissões para o subjects no NATS.

Pós-Condições O evento enviado deve ser enviado para todas sessões subscritas ao channel em questão.

Percurso Normal

Utilizando a conexão com o NATS, o serviço envia um pedido com o hub, channel e eventos,

utilizando esta informação a aplicação irá publicar os eventos no channel e retornar se as

publicações ocorreram com sucesso por cada evento.

Na eventualidade, de uma falha ocorrer, será enviado uma mensagem no tipo NACK

(Negative Acknowledge), definido pelo software NATS.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.5.2 Requisito Funcional “Criar notificação num channel”

Identificador & Nome Service:RF:30 - Criar notificação num channel

Descrição Um serviço envia um pedido através do NATS com a informação necessária para criar uma

notificação num channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Conexão autenticada com NATS.

Permissões para o subjects no NATS.

Pós-Condições A notificação criada deve ser enviada para todas sessões subscritas ao channel em questão.

Percurso Normal

Utilizando a conexão com o NATS, o serviço envia um pedido com o hub, channel e

notificação, utilizando esta informação a aplicação irá publicar a notificação no channel e

157

retornar se esta ocorreu com sucesso.

Na eventualidade, de uma falha ocorrer, será enviado uma mensagem no tipo NACK

(Negative Acknowledge), definido pelo software NATS.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.5.3 Requisito Funcional “Definir metadata num channel”

Identificador & Nome Service:RF:31 - Definir metadata num channel

Descrição Um serviço envia um pedido através do NATS com a informação necessária para definir ou

atualizar a metadata de um channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Conexão autenticada com NATS.

Permissões para o subjects no NATS.

Pós-Condições A metadata deve ficar armazenada.

Percurso Normal

Utilizando a conexão com o NATS, o serviço envia um pedido com o hub, channel e

metadata, utilizando esta informação a aplicação irá atualizar o metadata de um channel

substituindo valores já existentes na base de dados.

Na eventualidade, de uma falha ocorrer, será enviado uma mensagem no tipo NACK

(Negative Acknowledge), definido pelo software NATS.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.5.4 Requisito Funcional “Buscar metadata de um channel”

Identificador & Nome Service:RF:32 - Buscar metadata de um channel

Descrição Um serviço envia um pedido através do NATS com a informação necessária para buscar a

metadata de um channel.

158

Pré-Condições

Acesso à internet e dispositivo compatível.

Conexão autenticada com NATS.

Permissões para o subjects no NATS.

Pós-Condições Nenhuma identificada

Percurso Normal

Utilizando a conexão com o NATS, o serviço envia um pedido com o hub e channel,

utilizando esta informação a aplicação irá retornar a metadata do channel armazenados na base

de dados.

Na eventualidade, de uma falha ocorrer será enviado uma mensagem no tipo NACK (Negative

Acknowledge), definido pelo software NATS.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.5.5 Requisito Funcional “Definir/Atualizar namespace”

Identificador & Nome Service:RF:33 - Definir/Atualizar namespace

Descrição Um serviço envia um pedido através do NATS com a informação necessária para buscar a

metadata de um channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Conexão autenticada com NATS.

Permissões para o subjects no NATS.

Pós-Condições As configurações aplicadas no namespace devem ser propagadas por todas instâncias

pertencentes ao cluster.

Percurso Normal

Utilizando a conexão com o NATS, o serviço envia um pedido com o hub, identificador de

channel rules e nome do namespace. Utilizando esta informação a aplicação irá armazenar a

existência do namespace e notificar todos membros do cluster da atualização/criação do

namespace, e por fim retorna se a operação ocorreu com sucesso.

Na eventualidade, de uma falha ocorrer, será enviado uma mensagem no tipo NACK

(Negative Acknowledge), definido pelo software NATS.

Percursos

Alternativos

Não existem percursos alternativos.

159

Req. não-funcionais

Acesso à internet.

4.5.6 Requisito Funcional “Eliminar namespace”

Identificador & Nome Service:RF:34 - Eliminar namespace

Descrição Um serviço envia um pedido através do NATS com a informação necessária para eliminar um

namespace.

Pré-Condições

Acesso à internet e dispositivo compatível.

Conexão autenticada com NATS.

Permissões para o subjects no NATS.

Pós-Condições A eliminação no namespace deve ser propagada por todas as instâncias pertencentes ao

cluster.

Percurso Normal

Utilizando a conexão com o NATS, o serviço envia um pedido com o hub e nome do

namespace. Utilizando esta informação a aplicação irá eliminar a definições armazenadas

sobre a existência do namespace e notificar todos membros do cluster da eliminação do

namespace.

Na eventualidade, de uma falha ocorrer será enviado uma mensagem no tipo NACK (Negative

Acknowledge), definido pelo software NATS.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.5.7 Requisito Funcional “Definir configurações num channel”

Identificador & Nome Service:RF:35 - Definir configurações num channel

Descrição Um serviço envia um pedido através do NATS com a informação necessária para definir as

configurações de um channel.

Pré-Condições

Acesso à internet e dispositivo compatível.

Conexão autenticada com NATS.

Permissões para o subjects no NATS.

160

Pós-Condições As configurações aplicadas no channel devem ser propagadas por todas instâncias

pertencentes ao cluster.

Percurso Normal

Utilizando a conexão com o NATS, o serviço envia um pedido com o hub, channel e

configurações a serem aplicadas. Utilizando esta informação a aplicação deverá armazenar as

configurações e notificar todo o cluster que as configurações para aquele channel foram

alteradas.

Na eventualidade, de uma falha ocorrer será enviado uma mensagem no tipo NACK (Negative

Acknowledge), definido pelo software NATS.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.5.8 Requisito Funcional “Definir Channel Rules”

Identificador & Nome Service:RF:36 - Definir Channel Rules

Descrição Um serviço envia um pedido através do NATS com a informação necessária para criar um

channel rules.

Pré-Condições

Acesso à internet e dispositivo compatível.

Conexão autenticada com NATS.

Permissões para o subjects no NATS.

Pós-Condições Todos os channels e hub devem ser notificados caso estejam a usar o channel rule atualizado.

Percurso Normal

Utilizando a conexão com o NATS, o serviço envia um pedido com o hub, identificador de

channel rules e configurações a serem aplicadas. Utilizando esta informação a aplicação

armazena as novas configurações e notifica todas as instâncias do cluster da alteração do

channel rules.

Na eventualidade, de uma falha ocorrer, será enviado uma mensagem no tipo NACK

(Negative Acknowledge), definido pelo software NATS.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

161

4.5.9 Requisito Funcional “Publicar num channel”

Identificador & Nome Service:RF:37 - Definir configurações num hub

Descrição Um serviço envia um pedido através do NATS com a informação necessária para definir as

configurações de um hub.

Pré-Condições

Acesso à internet e dispositivo compatível.

Conexão autenticada com NATS.

Permissões para o subjects no NATS.

Pós-Condições As modificações no hub devem ser propagadas por todas as instâncias pertencentes ao cluster.

Percurso Normal

Utilizando a conexão com o NATS, o serviço envia um pedido com o hub e configurações a

serem aplicadas. Utilizando esta informação a aplicação armazenar as configurações do hub e

notificar todos membros do cluster das alterações do hub.

Na eventualidade, de uma falha ocorrer, será enviado uma mensagem no tipo NACK

(Negative Acknowledge), definido pelo software NATS.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

4.5.10 Requisito Funcional “Publicar num channel”

Identificador & Nome Service:RF:38 - Criar Auth Provider

Descrição Um serviço envia um pedido através do NATS com a informação necessária para criar um

Auth Provider pertencente a um Hub.

Pré-Condições

Acesso à internet e dispositivo compatível.

Conexão autenticada com NATS.

Permissões para o subjects no NATS.

Pós-Condições Auth Provider criado deverá ficar armazenado de forma a poder ser a utilizado posteriormente.

Percurso Normal

Utilizando a conexão com o NATS, o serviço envia um pedido com o hub e configurações a

serem aplicadas. Utilizando esta informação a aplicação deverá criar um Auth Provider e

armazená-lo e retornar este ao serviço.

Na eventualidade, de uma falha ocorrer será enviado uma mensagem no tipo NACK (Negative

162

Acknowledge), definido pelo software NATS.

Percursos

Alternativos

Não existem percursos alternativos.

Req. não-funcionais

Acesso à internet.

5. Requisitos Não-Funcionais

5.1 Requisitos de Performance

A performance e escalabilidade são dos pontos importantes desta aplicação, assim sendo, foram

tomadas decisões sobre tecnologias a utilizar e métodos a aplicar. Alguns exemplos, passam pela

utilização da linguagem Go, sendo uma linguagem com baixo consumo de memória e bastante eficiente,

esta linguagem é importante visto que permite um controle mais granular sobre quais partes ficam no

stack ou no heap, a utilização de apontadores de memória para um maior controlo sobre cópias de

informação e a existência de lightweight threads de forma a permitir que aplicação utilize todos os

núcleos do processador disponíveis. Toda a informação na aplicação é mantida em cache sempre que

possível, evitando realizar pedidos à base de dados em partes da aplicação muito executados,

sacrificando a velocidade de atualização da aplicação por um maior desempenho e latência reduzida.

A nível de escalabilidade é necessário que esta aplicação seja distribuída de forma a ter mais instâncias

e maior capacidade de processamento em paralelo, adicionalmente, esta deverá evitar pontos únicos de

falha. De forma a realizar estes pontos, a aplicação irá utilizar o protocolo gossip de forma a ser

distribuída e evitar a existência de um líder central de informação.

5.2 Requisitos de Proteção

A aplicação não irá gerir dados sensíveis, toda a informação enviada pela aplicação é completamente

transparente a esta, toda a informação é tratada como um conjunto de bytes e a pouca que é armazenada

não é modificável sem ser pela base de dados diretamente, não sendo uma responsabilidade da

aplicação.

Não é recomendado armazenar informações sensíveis em metadados de um channel, e o acesso a

channels com metadados deve ser apenas permitida a utilizadores autenticados. Adicionalmente, não é

recomendado o envio de informação sensível em eventos, caso seja necessário, o conteúdo dentro do

evento pode ser encriptado pelo cliente, como já referido a aplicação não lê o conteúdo do evento.

5.3 Requisitos de Segurança

Esta aplicação permite a utilização por utilizadores anónimos, no entanto, é possível não os permite

sendo passado essa responsabilidade a quem utiliza o Hub, adicionalmente, é possível definir

configurações restritas por defeito a todos os channels do hub por defeito, definindo somente em alguns

channels configurações mais permissíveis.

163

Os caminhos indicados no Auth Provider devem enviar a informação por protocolos com encriptação,

sendo no caso de HTTP a utilização de SSL/TLS, e no caso do NATS uma conexão encriptada e com

permissões restritas à API disponível por este. Adicionalmente, não é necessário enviar informação

sensível para autenticar um utilizador, no conteúdo pode ser enviado um token, hash de password ou

similares, sendo que a verificação de autenticação e permissões de uma sessão cabe ao destinatário do

Auth Provider.

Em casos de sistemas já existentes onde tokens são utilizados para autenticação, estes podem ser usados

como conteúdo de autenticação, tendo o destinatário do Auth Provider somente confirmar se o token é

válido.

Todos os tokens gerados devem ser de curta duração e armazenados de forma temporário e segura nos

dispositivos onde estes são utilizados.

Por fim, a utilização de HTTPS pelo cliente é recomendada e deveria ser obrigatória, sendo o caso no

ambiente de execução na plataforma AWS.

5.4 Requisitos Não-Funcionais das Regras de Negócio

Estão contemplados os seguintes requisitos não-funcionais relacionados com regras de negócio:

● RNF001: A aplicação AppSockets deve estar sempre ligada à Internet/Intranet

● RNF002: Para utilizar qualquer uma das funcionalidades disponibilizadas pelas APIs, os

utilizadores devem estar conectados à internet

● RNF003: Deve ser definido um tamanho máximo para mensagens de sessões

6. Outros Requisitos

Segue a lista de requisitos que, embora não estejam considerados no desenvolvimento da aplicação,

podem influenciar a correta experiência e utilização da mesma. Para o efeito, listam-se os seguintes

requisitos não-funcionais independentes da aplicação:

● O dispositivo cliente deverá ter um conjunto mínimo de especificações de hardware (RAM,

processador, etc..) de modo a permitir a utilização sem falhas, visto que certos channels

podem ter um fluxo de eventos muito elevado.

● Os servidores onde a aplicação irá ser executada devem ter boas especificações para suportar

um maior número de sessões, a aplicação foi testada na instância mais fraca disponível no

serviço AWS ECS com somente 0.25 VCpu e 0.5 GB de RAM.

7. Lista de Itens a Elaborar na Fase de Desenho

● Estrutura definitiva de cada classe a implementar no SI.

o Atributos, respetiva visibilidade e modo de acesso, e exposição para o exterior

o Métodos, públicos e privados

● Estrutura final da Base de Dados.

● Estrutura, métodos e interfaces das APIs de Administrador e Cliente.

164

8. Continuidade do Processo de Desenvolvimento

Após a conclusão da análise de requisitos do projeto AppSockets, transposta neste documento de SRS,

sugere-se o seguinte itinerário para o desenvolvimento do projeto.

1. Avaliação do SRS e documentos de análise adicionais, nomeadamente a proposta e o

cronograma

2. Proposta de Alteração ao SRS e/ou documentos de análise adicionais

3. Reavaliação da proposta na eventualidade de existirem pontos a alterar

4. Acordo para o arranque formal da fase de Desenho, Desenvolvimento e Implementação

